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Lazarsfeld and others [8,13,11,17] do not describe the non-vanishing syzygies of products 
of projective space when the embedding line bundle grows by a multiple of a semi-ample 
line bundle. More specifically, fix n = (n1, n2) ∈ Z2

≥1 and set Pn := Pn1 × Pn2 . Given 
b = (b1, b2) ∈ Z2, we let
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OPn(b) := π∗
1OPn1 (b1) ⊗ π∗

2OPn2 (b2) ,

where πi is the projection from Pn to Pni . If d ∈ Z2
≥1 then OPn(d) is very ample, and 

so defines an embedding:

Pn = Pn1 × Pn2 PH0 (Pn,OPn(d)) ∼= P rn,d
ιd .

We call this the d-uple Segre-Veronese map. We are interested in studying the asymptotic 
behavior of the syzygies of Pn under the (d1, d2)-uple Segre-Veronese embedding as d1 or 
d2 goes to infinity. More generally, following the work of Green [18,19], we also study the 
syzygies of other line bundles on Pn, as this often provides a more unified perspective, 
see for example [19, Theorem 2.2], [12, Theorem 2], and [13, Theorem 4.1]. Thus, we let

S(b;d) =
⊕
k∈Z

H0(P rn,d , (ιd)∗(OPn(b)(k)))

be the graded section module of the pushforward of OPn(b) along the map ιd. We 
consider S(b; d) as an R-module where R = SymH0 (Pn,OPn(d)) is the homogeneous 
coordinate ring of P rn,d . Note if d � 0 then the line bundle OPn(d) will be normally 
generated, in which case S(0; d) is isomorphic to the homogeneous coordinate ring of 
Pn as a subvariety of P rn,d .

By studying syzygies of Pn, we mean studying the minimal graded free resolution of 
S(b; d) as an R-module, which has the form:

0 S(b;d) F0 F1 · · · · · · Frn,d
0 ,

where Fp is a finitely generated graded free R-module [14, Theorem 1.1]. If we let

Kp,q (n,b;d) := spanK
〈

minimal generators of Fp

of degree (p + q)

〉
be the finite-dimensional vector space of minimal syzygies of homological degree p and 
degree (p + q), then Fp is isomorphic to 

⊕
q Kp,q (n,b;d)⊗KR (−(p + q)). When b = 0, 

we often write Kp,q(n; d) for Kp,q(n, 0; d). The main question we are interested in is the 
following.

Question 1.1. If d � 0, then for what p and q is Kp,q(n, b; d) �= 0?

Remark 1.2. Using the description of the d-uple Segre-Veronese map given above, one 
sees that

rn,d :=
(
d1 + n1

)(
d2 + n2

)
− 1 ∈ O (dn1

1 dn2
2 ) .
n1 n2
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Throughout the paper, we will use big-O notation for multivariate functions as follows: 
if f and g are R-valued functions defined on some domain U ⊂ Rn, then we write 
f(x) ∈ O(g(x)) as x → ∞ if and only if there exists constants C > 0 and M > 0 such 
that |f(x)| ≤ C|g(x)| for all x ∈ U , with ‖x‖∞ ≥ M . Further we write d � 0 to mean 
that d1, d2 ≥ 0 and d1 + d2 � 0.

Considerations of Castelnuovo-Mumford regularity imply that if b ≥ 0 and d � 0
then Kp,q(n, b; d) = 0 for all q > |n| = n1 + n2 (see Proposition 2.3 for a precise 
statement). Thus, Question 1.1 is of primary interest when 1 ≤ q ≤ |n|.

As a running example, consider P 1 × P 1 when b = (0, 0) and d = (d1, d2). If both 
d1, d2 → ∞, then the work of Ein and Lazarsfeld provides an asymptotic answer to 
Question 1.1 [13]. For example, Ein and Lazarsfeld’s work implies that if d1, d2 → ∞
then Kp,2(n, 0; d) �= 0 for 100% of possible p’s [13, Theorem A]. That said, Ein and 
Lazarsfeld’s results require the embedding line bundle to grow in an ample fashion, i.e. 
the embedding bundle needs to be of the form B + dA where A is ample. Thus, if we fix 
either d1 or d2, then Ein and Lazarsfeld’s non-vanishing results no longer apply.

For example, if we fix d2 and allow only d1 → ∞, then the embedding line bundle 
OPn(d1, d2) grows like OPn(0, 1), which is semi-ample. Recall a line bundle L on a smooth 
variety is semi-ample if the complete linear series |kL| is base point free for some k ≥ 1. 
The prototypical example of semi-ample line bundles are OPn(1, 0) and OPn(0, 1) on Pn.

The difference between the cases of ample and semi-ample growth can be visualized 
if we view the sequence of embedding line bundles as a sequence of points inside the nef 
cone of P 1 × P 1.

O(0, 1)

O(1, 0)

The case covered by Ein and Lazarsfeld corresponds to the sequence of points going to 
infinity along a line of positive slope, for example, the sequence of diamonds along the 
line above. The case of semi-ample growth not covered by Ein and Lazarsfeld’s results 
corresponds to the sequence of points going to infinity along a ray parallel to one of the 
axes. For example, see the circles along the horizontal line above.

Interestingly, the syzygies of P 1 × P 1 in the semi-ample case behave differently than 
in the ample case. For instance, it is no longer true that in the limit Kp,2((1, 1); d) �= 0
for 100% of possible p’s. More precisely, following the notation of [17], set
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ρq(n;d) :=
#
{
p ∈ N|

∣∣ Kp,q(n;d) �= 0
}

rd
,

which by the Hilbert Syzygy Theorem is the percentage of degrees in which non-zero 
syzygies appear [14, Theorem 1.1]. Using this notation, and building upon work of Lem-
men’s [27], one can show that 0 < ρ2((1, 1); d) < 1.

Thus, syzygies in the setting of semi-ample growth can behave differently than is 
suggested by the work of Ein and Lazarsfeld [13,11]. Further, the fact that this limit is 
not zero shows that syzygies in the case of semi-ample growth also do not behave as 
suggested by Green’s work on syzygies of curves [18,19]. Hence the asymptotic behavior 
of syzygies under semi-ample growth is not controlled by either the dimension or the 
Iitaka dimension of the embedding line bundle.1

This raises the question of: what precise sort of asymptotic nonvanishing should we 
expect in the semi-ample case? The main goal of this paper is to use Pn1 × Pn2 as a 
model for shedding light on this question. Our main result is the following, which, given 
q, gives a range for p for which these vector spaces of syzygies, Kp,q(n; d), are non-zero.

Theorem A. Fix n = (n1, n2) ∈ Z2
≥1, d = (d1, d2) ∈ Z2

>1, and an index 1 ≤ q ≤ |n|. If 
d1 > q and d2 > q then Kp,q(n; d) �= 0 for all p in the range:

min
{(

d1 + i

i

)(
d2 + j

j

)}
i+j=q

0≤i≤n1
0≤j≤n2

− (q + 2)

≤ p ≤ rn,d − min
{(

d1 + n1 − i

n1 − i

)(
d2 + n2 − j

n2 − j

)}
i+j=q

0≤i≤n1
0≤j≤n2

− (|n| + 1).

Notice that these bounds depend on both d1 and d2. In particular, that asymptotic 
behavior is dependent on the relationship between d1 and d2. Again, this underscores 
the complicated asymptotic behaviors possible for syzygies under semi-ample growth.

In order to highlight this behavior, and explain the terms appearing in the bounds of 
Theorem A, let us consider what can occur when q = 2. In this case, assuming n1, n2 ≥ 2, 
the main terms of the bounds in Theorem A can be written as

min
{
d2
1
2 , d1d1,

d2
2
2

}
−O

(
lower ord.

terms

)

≤ p ≤ rn,d−min
{

dn1
1 dn2−2

2
n1!(n2 − 2)! ,

dn1−1
1 dn2−1

2
(n1 − 1)!(n2 − 1)! ,

dn1−2
1 dn2

2
(n1 − 2)!n2!

}
−O

(
lower ord.

terms

)
.

1 Another indication of the difference between the settings of semi-ample and ample growth is given in [5]
where it is shown that the normality heuristic of Ein, Erman, and Lazarsfeld (i.e. that a “sufficiently posi-
tive” Betti table should behave roughly like the Betti table of a large Koszul complex) fails for Hirzebruch 
surfaces embedded by certain sequences of line bundles that grow in a semi-ample fashion (e.g. P1 × P1

and O(d1, 2)).
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Focusing our attention on the upper bounds, we see that there are roughly three cases. 
If d1 � d2, we expect the upper bound to be approximately rn,d − Cdn1−2

1 dn2
2 where C

is a constant. On the other hand, if d1 ∼ d2, then the upper bound is roughly rn,d −
C ′dn1−1

1 dn2−1
2 for some constant C ′. Finally, if d2 � d1, we expect the upper bound to 

be approximately rn,d − C ′′dn1
1 dn2−2

2 for some constant C ′′.
For larger q, the number of cases, and the distinctions between them, become much 

more complicated. We propose the following rough heuristic for thinking about the 
bounds appearing in Theorem A. The lower bounds reflect the asymptotic syzygies of 
restricting OPn(d) to P i × P q−i ⊂ Pn as i varies. Similarly, the upper bounds reflect 
asymptotic syzygies of restricting OPn(d) to Pn1−i × Pn2−j ⊂ Pn for i + j = q.

In fact, when proving Theorem A we explicitly construct non-trivial syzygies in the 
given ranges, and in a sense, these syzygies naturally live on subvarieties of the form 
P i×P j ⊂ Pn where i +j = q. (Curiously, Ein and Lazarsfeld’s work in [13] also constructs 
asymptotic syzygies from certain subvarieties, but we know of no direct connections 
between the methods.) This can be seen in a technical way in that we deduce Theorem A
from Theorem 7.1 via a lifting argument.

As an immediate corollary of Theorem A, and a generalization of the example of 
P 1 × P 1 discussed above, we are able to provide a lower bound on the percentage of 
degrees in which non-zero syzygies asymptotically appear. In the following corollary, we 
let Ci,j = n1!n2!

(n1−i)!(n2−j)! and Di,j = n1!n2!
i!j! .

Corollary B. Fix n = (n1, n2) ∈ Z2
≥1, d = (d1, d2) ∈ Z2

>1, and an index 1 ≤ q ≤ |n|. If 
d1 > q and d2 > q then

ρq(n;d) ≥ 1 −
∑

i+j=q
0≤i≤n1
0≤j≤n2

(
Ci,j

di1d
j
2

+ Di,j

dn1−i
1 dn2−j

2
+ O

(
d1 + d2

di+1
1 dj+1

2
+ d1 + d2

dn1−i+1
1 dn2−j+1

2

))
.

To deduce the bound in Corollary B we apply Theorem A, replacing terms like (d1 +
n1)(d1+n1−1) · · · (d1+n1−i) by di1 for simplicity. This simplification means Corollary B
is less sharp than Theorem A.

Example 1.3. If we let n = (1, 5) and q = 2, then by Corollary B we see that

ρ2((1, 5);d) ≥ 1 − 20
d2
2
− 60

d1d3
2
− 5

d1d2
− 120

d4
2

−O

(
lower ord.

terms

)
.

In particular, if d2 is fixed and d1 → ∞, then the limit of ρq(n; d) is greater than or 
equal to 1 − 20

d2
2
− 120

d4
2

.

In the setting of ample growth, this recovers the results of Ein and Lazarsfeld: namely, 
if both d1 → ∞ and d2 → ∞, then ρq(n; d) → 1. At the other extreme, if d2 is fixed and 
only d1 → ∞, then
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lim
d1→∞

ρq(n;d) ≥ 1 − n2!
(n2 − q)!dq2

− n2!
(n1 − q)!dn1+n2−q

2
.

In particular, in this case, we do not believe ρq(n; d) will approach 1. Proving this 
would require a vanishing result for asymptotic syzygies (see [13, Conjecture 7.1, Con-
jecture 7.5]). Note that in the ample setting, the analogous vanishing result was recently 
proven [34].

Under mild hypotheses, we are able to generalize Theorem A to describe the asymp-
totic non-vanishing of syzygies for other line bundles on Pn. Towards this, we introduce 
the following assumption that will be used at various points.

Assumption 1.4. Given n = (n1, n2) ∈ Z2
≥1, d = (d1, d2) ∈ Z2

>1, and b ∈ Z2
≥0 we say 

that (n, b; d) satisfies Assumption 1.4 if and only if for every k ∈ Z the following pair 
of inequalities hold:

k >
−(n1 + 1 + b1)

d1
or k <

−b2
d2

(1)

and

k >
−(n2 + 1 + b2)

d2
or k <

−b1
d1

. (2)

Theorem C. Fix n = (n1, n2) ∈ Z2
≥1, d = (d1, d2) ∈ Z2

>1, b ∈ Z2
≥0 and an index 

1 ≤ q ≤ |n|. If (n, b; d) satisfies Assumption 1.4 and d1 > q + b1, d2 > q + b2 then 
Kp,q(n, b; d) �= 0 for all p in the range:

min
{(

d1 + i

i

)(
d2 + j

j

)}
i+j=q

0≤i≤n1
0≤j≤n2

− (q + 2)

≤ p ≤ rn,d − min
{(

d1 + n1 − i

n1 − i

)(
d2 + n2 − j

n2 − j

)}
i+j=q

0≤i≤n1
0≤j≤n2

− (|n| + 1) .

In many ways, this theorem mimics Theorem A. For example, since b is fixed, the 
bounds governing non-vanishing depend only on d and are the same as the bounds in 
Theorem A. The main difference between these theorems is that when b �= 0 the section 
module S(b; d) need not be Cohen-Macaulay as an R-module. Our methods require, in 
a crucial way, that S(b; d) be Cohen-Macaulay. By Proposition 3.6 this Assumption 1.4
is precisely what is needed to ensure that S(b; d) is a Cohen-Macaulay.

Our proof of Theorem A is based on generalizing the monomial methods of [11] to 
explicitly construct non-zero syzygies in the given ranges after having quotiented by 
a regular sequence. As is often the case when passing from the standard grade to the 
multigraded setting such a generalization is not straightforward [4,3,6,9,15,23,24,26,21,
20,28–31,35–37,39,40].
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The general idea is that given a linear regular sequence on S(b; d) and an element 
f ∈ R, not contained in the ideal generated by the regular sequence, it is possible 
to construct non-zero syzygies in a range determined by the regular sequence and the 
element f . More specifically, if I ⊂ R is an ideal generated by linear forms that are 
a regular sequence on S(b; d), satisfying a few technical conditions, and f ∈ R \ I

is a monomial of degree q, then there exists a subspace L(f) ⊂ (I :R f)1 such that 
Kp,q(n, b; d) �= 0 for all p in the range:

dimL(f) ≤ p ≤ dimK(I :R f)1 − dimK I1 .

In [11] Ein, Erman, and Lazarsfeld prove a similar result for a single projective space. In 
this case, they work with a particular linear monomial regular sequence and define L(f)
in terms of monomials dividing f . However, these methods cannot be directly applied to 
a product of projective spaces.

First, the case of a product of projective spaces is complicated by the fact that there 
are no monomial regular sequences of length |n| + 1 on either the Z2-graded Cox ring 
of Pn, denoted Cox(Pn) (see [9]), or the Z-graded homogeneous coordinate ring of Pn

embedded by OPn(d). Instead, we work with a set of bi-degree d = (d1, d2) elements of 
the Cox ring of Pn, which, while not a regular sequence of length |n| + 1 on Cox(Pn), 
corresponds to a regular sequence of length |n| +1 on the homogeneous coordinate ring of 
Pn embedded by OPn(d). For example, if n = (2, 4) and d = (d1, d2) then the sequence 
we use is:

g0 = xd1
0 yd2

0

g1 = xd1
1 yd2

0 + xd1
0 yd2

1

g2 = xd1
2 yd2

0 + xd1
1 yd2

1 + xd1
0 yd2

2

g3 = xd1
2 yd2

1 + xd1
1 yd2

2 + xd1
0 yd2

3

g4 = xd1
2 yd2

2 + xd1
1 yd2

3 + xd1
0 yd2

4

g5 = xd1
2 yd2

3 + xd1
1 yd2

4

g6 = xd1
2 yd2

4 .

Put differently, we work with a set of bi-degree d = (d1, d2) elements of the Cox ring 
of Pn that is not a regular sequence on Cox(Pn), but which define an ideal in Cox(Pn)
supported on the irrelevant ideal of Pn. Thus, in the language of [3], we work with a 
virtual regular sequence of length |n| + 1 of bi-degree d = (d1, d2) on Cox(Pn). These 
forms, when considered as degree one elements of the homogeneous coordinate ring of 
Pn embedded by OPn(d), are a regular sequence of length |n| + 1.

Example 1.5. Continuing the example when n = (2, 4) from above, the elements 
g0, g1, . . . , g6 do not form a regular sequence on Cox(P 2 × P 4) ∼= K[x0, x1, x2, y0, y1, y2,

y3, y4]. In particular, 〈g0, g1, . . . , g6〉 has 〈x0, x1, x2〉 as one of its associated primes, so 
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the gi’s do not even form a system of parameters on Cox(P 2 × P 4). That said, one can 
show that g0, g1, . . . , g6 is supported on 〈x0, x1, x2〉 ∩ 〈y0, y1, y2, y3, y4〉.

Working with such a regular sequence poses significant new challenges. For example, 
in [11] the authors work with a monomial regular sequence, and so computing the analog 
of (I :R f) is amenable to monomial techniques. The regular sequence we work with, on 
the other hand, is complicated, and computing (I :R f) is in general difficult.

In fact, we devote all of Section 4 to developing methods for understanding (I :R f). 
The central theme is to exploit the fact that our regular sequence, while not monomial, 
has a large number of symmetries. That is, the ideal generated by the regular sequence 
is homogeneous with respect to a number of non-trivial non-standard gradings. These 
gradings, when combined with a series of spectral sequence arguments, eventually allow 
us to describe (I :R f).

A second challenge is defining the correct subspace of (I :R f), from which to construct 
non-trivial syzygies. In particular, since I is not generated by monomials, the notion of 
one monomial dividing another in R/I is quite nuanced. This means the definition of 
L(f) used in [11] for a single projective space does not generalize to the case of a product 
of projective spaces. Instead, we introduce a new method for constructing non-trivial 
syzygies based upon a non-standard grading for which I is homogeneous. We are then 
able to define L(f) in terms of certain degrees in this special grading and show that 
these elements give non-zero syzygies.

Finally, we note that Theorem A is not sharp. One source of error is that we are 
unable to fully describe (I :R f), and a better understanding of this ideal would result 
in sharper non-vanishing statements. That said, we do believe that the upper bounds in 
Theorem A are asymptotically sharp.

The paper is organized as follows: §2 gathers background results and sets up the 
problem. §3 introduces the regular sequence crucial to our methods, and in §4 we study 
the ideal membership question for the ideal generated by this regular sequence. In §5 we 
develop the monomial methods we use to construct non-trivial syzygies, and §6presents 
the exact monomials we will use. §7 contains the key case of Kp,q(n, b; d) for P q−k×Pk. 
Finally, §8 contains the proof of Theorem A.

Acknowledgments

The author was partially supported by the National Science Foundation under Award 
Nos. NSF GRFP DGE-1256259, DMS-1440140, DMS-1502553, NSF FRG DMS-2053221, 
and NSF MSPRF DMS-2002239. Further the author is grateful for the support of the 
Mathematical Sciences Research Institute in Berkeley, California, where she was in res-
idence for the 2020–2021 academic year. I would like to thank Daniel Erman, Moisés 
Herradón Cueto, Kit Newton, Solly Parenti, Claudiu Raicu, and Melanie Matchett Wood 
for their helpful conversations and comments. Finally, thank you to the anonymous ref-
erees for their careful reading and thoughtful comments. The computer algebra system
Macaulay2 [32] provided valuable assistance throughout this work.



J. Bruce / Journal of Algebra 649 (2024) 347–391 355
Notation

Throughout we work over a field K. When clear we generally admit the reference to 
the field, and so write P r for P r

K := P (Kr+1). When referring to vectors (i.e. elements 
of Zn or Kn) we normally use a bold font for example a, b, d, v, w. Given a vector 
v = (v1, v2, . . . , vn) we denote the sum v1 +v2 + · · ·+vn by |v|. For the sake of notational 
hygiene we abuse notation slightly and write Z2

≥1 for (Z≥1)2, that is tuples (a, b) ∈ Z2

such that a ≥ 1 and b ≥ 1. Likewise for Z2
≥0. For brevity we write 1 for (1, 1) ∈ Z2 and 

0 for (0, 0) ∈ Z2.

2. Background and set up

Fixing n = (n1, n2) ∈ Z2
≥1, we let S′ = K[x0, x1, . . . , xn1 ] and S′′ = K[y0, y1, . . . , yn2 ]

be standard Z-graded polynomial rings, and set S = S′ ⊗K S′′ with the in-
duced Z2-multigrading. Concretely S is isomorphic to the bi-graded polynomial ring 
K[x0, x1, . . . , xn1 , y0, y1 . . . , yn2 ] where deg(xi) = (1, 0) ∈ Z2 and deg(yj) = (0, 1) ∈ Z2

for every i = 0, 1, . . . , n1 and j = 0, 1, . . . , n2. Moreover, S is isomorphic to the Cox 
ring of Pn, which we generally denote Cox(Pn) (see [9]). Since S is Z2-graded there is a 
natural decomposition of K-vector spaces

S ∼=
⊕
a∈Z2

Sa,

where Sa is the K-vector space spanned by monomials in S of bi-degree a. The Hilbert 
function of S is the function HF(a, S) = dimK Sa. Similarly given an ideal J ⊂ S that 
is homogeneous with respect to this Z2-grading, we write Ja for the K-vector space 
spanned by monomials in J of bi-degree a, and the Hilbert function of J is the function 
HF(a, J) = dimK Ja.

Definition 2.1. Given b ∈ Z2 and d ∈ Z2
≥1 we define the bi-graded Veronese module of 

S to be

S(b;d) :=
⊕
k∈Z

Skd+b ⊂ S,

which we consider as a Z-graded R = SymSd module.

More specifically a generator � of R corresponds to a monomial m ∈ Sd, and then �
acts on S(b; d) via multiplication by this monomial m. Further, the degree k piece of 
S(b; d) is Skd+b, and so the degree one piece is Sd+b. Now as an R-module S(b; d) is 
isomorphic to the Z-graded homogeneous coordinate ring of Pn embedded by OPn(d).

Given p, q ∈ N we define (p, q)-th Koszul cohomology group of S(b; d) to be the 
cohomology of the sequence:
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· · ·
∧p+1

R1 ⊗ S(q−1)d+b
∧p

R1 ⊗ Sqd+b
∂p+1,q−1

∧p−1
R1 ⊗ S(q+1)d+b · · ·∂p,q (3)

where the differentials are given

∂p+1,q−1 (m0 ∧m1 ∧ · · · ∧mp ⊗ f) =
p∑

i=0
(−1)im0 ∧m1 ∧ · · · ∧ m̂i ∧ · · · ∧mp ⊗mif

∂p,q (m1 ∧m2 ∧ · · · ∧mp ⊗ f) =
p∑

i=1
(−1)im1 ∧m2 ∧ · · · ∧ m̂i ∧ · · · ∧mp ⊗mif.

As in the introduction, we denote this by Kp,q(n, b; d), and note that Kp,q(n, b; d) ∼=
Kp,q (Pn,OPn(b);OPn(d)).

That said it will be helpful for us to realize the Koszul complex in (3) above in a 
different way. Towards this, notice that there exist maps:

R S(0,d) S .

When restricted to the degree one piece of R, and the subsequent images, these maps 
give natural isomorphisms

R1 S(0;d)1 Sd.
∼ ∼

Thus, the R-module action of R1 on S is the same as the S-module action of Sd on 
S, and so the Koszul complex in (3) is naturally isomorphic to the following Koszul 
complex:

· · ·
∧p+1

Sd ⊗ S(q−1)d+b
∧p

Sd ⊗ Sqd+b
∂p+1,q−1

∧p−1
Sd ⊗ S(q+1)d+b · · ·∂p,q (4)

where the differentials are defined in an analogous way. So the cohomology of (4) is 
isomorphic to Kp,q(n, b; d).

We end this section by noting that considerations of Castelnuovo-Mumford regular-
ity show that if d � 0, relative to b, and b is sufficiently large, relative to n, then 
Kp,q(n, b; d) = 0 for q > |n|. In particular, if b = 0 then Kp,q(n, 0; d) = 0 for q > |n|
for all choices of d ∈ Z2

≥1.

Example 2.2. If b �= 0 then it is not the case that Kp,|n|(n, 0; d) = 0 for all choices 
of d ∈ Z2

≥1. For example, using arguments similar to those in Proposition 2.3 one can 
show that if n = (1, 3), d = (3, 3), and b = (−2, −1) then there exists p such that 
Kp,|n|(n, b; d) �= 0.
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Proposition 2.3. Fix n = (n1, n2) ∈ Z2
≥1, d = (d1, d2) ∈ Z2

≥1, and b ∈ Z2. If the 
following three pairs of inequalities are satisfied then Kp,q(n, b; d) = 0 for q > |n|:

b1 + d1n2 > −(n1 + 1) or b2 + d2n2 < 0, (5)

b2 + d2n1 > −(n2 + 1) or b1 + d1n1 < 0 (6)

b1 > −(n1 + 1) or b2 > −(n2 + 1). (7)

Proof. By Proposition 2.38 of [1] it is enough to show that Hi(Pn, OPn(b +d(|n| −i))) =
0 for all i > 0. Using the Künneth formula [38, Tag 0BEC] to compute Hi(Pn, OPn(b +
d(|n| − i))) = 0 we see that these cohomology groups are only potentially non-zero 
when i = n1, n2, and |n|. In particular, Hn1(Pn, OPn(d + b(|n| − n1)) is isomorphic 
to Hn1(Pn1 , OPn1 (b1 + d1n2)) ⊗ H0(Pn2 , OPn2 (b2 + d2n2)). Thus, the condition that 
Hn1(Pn, OPn(b +d(|n| −n1)) = 0 is equivalent to (5). An analogous argument shows that 
the vanishing of Hn2(Pn, OPn(b +d(|n| −n2)) is equivalent to (7). Finally, in the last case, 
when i = |n|, by using the Künneth formula we see that H |n|(Pn, OPn(b +d(|n| −|n|)))
is zero if and only if b1 > −(n1 + 1) or b2 > −(n2 + 1). �
3. A regular sequence on Pn1 × Pn2

One useful approach when attempting to construct non-zero syzygies is to quotient 
by a linear regular sequence as this does not change the Koszul cohomology groups [1, 
Theorem 2.20]. For example, in order to prove non-vanishing results for Pn, Ein, Erman, 
and Lazarsfeld quotient by the regular sequence consisting of powers of the variables 
[11]. Since we are working on a product of projective spaces such a regular sequence is 
not an option for us. Namely there are no monomial regular sequences of bi-degree d of 
length |n| + 1 on either the Cox ring of Pn or the homogeneous coordinate ring of Pn

embedded by OPn(d).
Instead, we choose to work with a sequence of multigraded forms that are a virtual 

regular sequence of length |n| +1 on the Cox ring of Pn (i.e. S). That is to say a sequence 
of elements g0, g1, . . . , g|n| of bi-degree d whose support is contained in the irrelevant ideal 
〈x0, x1, . . . , xn1〉 ∩〈y0, y1, . . . , yn2〉 of Pn. Since the ideal 〈g0, g1, . . . , g|n|〉 is supported on 
the irrelevant ideal, the gi form a regular sequence on Pn. By the isomorphism between 
Sd and R1 discussed in the previous section, such g0, g1, . . . , g|n| correspond to a sequence 
of linear forms �0, �1, . . . , �|n| in R, that is a regular sequence on S(b; d). The gi we use 
generalize forms first introduced by Eisenbud and Schreyer in [16], and later used in [2]
and [33].

Definition 3.1. Fix n = (n1, n2) ∈ Z2
≥1 and d = (d1, d2) ∈ Z2

≥1. Given 0 ≤ t ≤ |n| we 
define

gt :=
∑

i+j=t
0≤i≤n1

xd1
i yd2

j .
0≤j≤n2
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Example 3.2. For example if n = (1, 1) and d = (d1, d2) then there are three gt’s:

g0 = xd1
0 yd2

0 , g1 = xd1
0 yd2

1 + xd1
1 yd2

0 , g2 = xd1
1 yd2

1 .

On the other hand if n = (2, 3) and d = (d1, d2) there are six gt’s:

g0 = xd1
0 yd2

0 , g1 = xd1
0 yd2

1 + xd1
1 yd2

0 , g2 = xd1
0 yd2

2 + xd1
1 yd2

1 + xd1
2 yd2

0 ,

g3 = xd1
0 yd2

3 + xd1
1 yd2

2 , g4 = xd1
1 yd2

3 + xd1
2 yd2

2 , g5 = xd1
2 yd2

3 .

Definition 3.3. Throughout the paper we let R(n, d) = 〈g0, g1, . . . , g|n|〉. Note that 
R(n, d) depends on both n = (n1, n2) and d = (d1, d2), however, for notational hy-
giene, we often suppress this and simply write R or R(d) for R(n, d) when we feel it 
will not cause confusion. We denote the quotient S/R by S.

An extremely important aspect of these particular forms is that they behave nicely 
when quotienting by xn1 or yn2 . For example, if n = (2, 3) then the image of g2 =
xd1

0 yd2
2 + xd1

1 yd2
1 + xd1

2 yd2
0 in S/〈x2〉 is xd1

0 yd2
2 + xd1

1 yd2
1 , which is the same as g2 when 

n = (1, 3). This makes them amenable to inductive arguments on n1 or n2. We make 
significant use of this fact throughout, and so record it in the following lemma.

Lemma 3.4. Fix n = (n1, n2) ∈ Z2
≥1 and d = (d1, d2) ∈ Z2

≥1. Let S′ = K[x0, x1, . . . ,
xn1−i, y0, y1, . . . , yn2−j ] considered with the bi-grading given by deg xs = (1, 0) ∈ Z2

and deg yt = (0, 1) ∈ Z2. Considering R(n1 − i, n2 − j, d) ⊂ S′ there exists a natural 
isomorphism

S′

R(n1 − i, n2 − j,d)

S
R(n,d) + 〈xn1−i+1, xn1−i+2, . . . , xn1 , yn2−j+1, yn2−j+2, . . . , yn2〉

.∼

Proof. By induction, it is enough to consider the case when i = 1 and j = 0. There is a 
natural isomorphism

S

〈xn1〉
R(n,d) + 〈xn1〉

〈xn1〉

S
R(n,d) + 〈xn1〉

,∼

and since S/〈xn1〉 ∼= S′ it is enough to show that R(n,d)+〈xn1 〉
〈xn1 〉

is isomorphic to R(n1 −
1, n2, d). A straightforward argument shows that R(n,d)+〈xn1〉

〈xn1〉
is isomorphic to the ideal 

〈g0, g1, . . . , g|n|〉 where gt is the image of gt in S/〈xn1〉. However, one sees that



J. Bruce / Journal of Algebra 649 (2024) 347–391 359
gt =
∑

a+b=t
0≤a≤n1−1

0≤b≤n2

xd1
a yd2

b ,

and so considered as an element of S′, the ideal 〈g0, g1, . . . , g|n|〉 is isomorphic to R(n1−
1, n2, d). �

As noted in the previous section, there is a natural isomorphism between R1 and Sd, 
and we write �t for the image of gt in R1 under this isomorphism. Notice that while 
gt ∈ S has bi-degree d, the corresponding element �t ∈ R is of degree one. We then 
let L(n, d) be the ideal 〈�0, �1, . . . , �|n|〉 ⊂ R. As with R(n, d) we will often write L or 
L(d) for L(n, d) when n and d are clear from context. We write R for the quotient 
R/L, and S(b; d) for S(b; d)/LS(b; d), which we consider as a R-module. The natural 
isomorphisms discussed in the previous section remain isomorphisms after quotienting 
by R and L

R1 S(0;d)1 Sd.
∼ ∼

As indicated at the start of the section these �t’s form a regular sequence on S(b; d)
as long as S(b; d) is Cohen-Macaulay as an R-module. The case when d = 1 and 
b = 0 was shown by Eisenbud and Schreyer in their work on Boij-Söderberg theory [16, 
Proposition 5.2]. The following proposition generalizes their argument to the case of all 
d ∈ Zt

≥1.

Proposition 3.5. Fix n = (n1, n2) ∈ Z2
≥1, d = (d1, d2) ∈ Z2

≥1, and b = (b1, b2) ∈ Z2. If 
(n, b; d) satisfies Assumption 1.4 then the forms �0, �1, . . . , �|n| are a regular sequence on 
S(b; d) as an R-module.

A key part of the Proposition 3.5 is the following characterization of when S(b; d) is 
Cohen-Macaulay as an R-module. In particular, the inequalities appearing in Assump-
tion 1.4 are needed as they exactly describe when S(b; d) is Cohen-Macaulay as an 
R-module. This is a major difference between a product of projective spaces and a single 
projective space, as in the case of a single projective space the equivalent of S(b; d) is 
always Cohen-Macaulay [11].

Proposition 3.6. Fix n = (n1, n2) ∈ Z2
≥1, d = (d1, d2) ∈ Z2

≥1, and b = (b1, b2) ∈ Z2. 
S(b; d) is Cohen-Macaulay as an R-module if and only if for every k ∈ Z the following 
pair of inequalities hold:

k >
−(n1 + 1 + b1)

d1
or k <

−b2
d2

(8)

and
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k >
−(n2 + 1 + b2)

d2
or k <

−b1
d1

. (9)

Note that S(b; d) is Cohen-Macaulay for all d if b = 0. In particular, since a product 
of projective spaces is a smooth toric variety, the case when b = 0 follows from a far 
more general result of Hochster [22] (see also [10, Theorem 9.2.9]).

Proof of Proposition 3.6. If we write Hi
R+

(S(b; d)) for the i-th local cohomology module 
of S(b; d), then S(b; d) is Cohen-Macaulay if and only if dimS(b; d) is equal to inf{i ∈
N : Hi

R+
(S(b; d)) �= 0} [25, Theorem 9.1]. Moreover, since S(b; d) is isomorphic to the 

section module of (ιd)∗OPn(b) where ιd : Pn → P rn,d is the d’uple Segre-Veronese map 
induced by OPn(d)

inf
{
i ∈ Z>1

∣∣ Hi
R+

(S(b;d)) �= 0
}

= inf
{
i ∈ Z>1

∣∣∣∣ Hi−1 (P rn,d , (ιd)∗OPn(b)(k)) �= 0
for some k ∈ Z

}
,

and so S(b; d) is Cohen-Macaulay if and only if (ιd)∗OPn(b) has no intermediate 
cohomology [25, Theorem 13.21]. Since Hi−1 (P rn,d , (ιd)∗OPn(b)(k)) is isomorphic to 
Hi−1 (Pn,OPn(b + kd)) by the Künneth formula [38, Tag 0BEC] we further reduce to 
cohomology computation on Pn1 and Pn2 . From this we see that there is no intermediate 
cohomology if for every k ∈ Z:

b1 + kd1 > −(n1 + 1) or b2 + kd2 < 0 (10)

and

b2 + kd2 > −(n2 + 1) or b1 + kd1 < 0. � (11)

Proof of Proposition 3.5. By Proposition 3.6, S(b; d) is Cohen-Macaulay as an R-
module, and so showing that �0, �1, . . . , �|n| is a regular sequence on S(b; d) is equivalent 
to showing that �0, �1, . . . , �|n| is part of a system of parameters. Now to show that 
the �i are a system of parameters on the R-module S(b; d), it suffices to verify that 
dimS(b; d) = dimS(b; d) − (|n| + 1) [7, Theorem 2.12]. The dimension of a module is 
the dimension of its support, and we see that

suppR S(b;d) = suppR S(b;d) ⊗R R = suppR S(b;d) ⊗R ⊗S(0;d)

⊂ suppR S(b;d) ∩ suppS(0;d).

This allows us to further reduce to the base when b = 0. In that case S(0; d) is simply 
the homogenous coordinate ring of Pn embedded by OPn(d), and we must show that the
vanishing locus V (�0, �1, . . . , �|n|) ⊂ P |n| has codimension |n| + 1, which is to say that 
the vanishing locus V (�0, �1, . . . , �|n|) is empty. Said another way, we must show that the 
incomplete linear series L(n, d) generated by g0, g1, . . . , g|n| is base-point free on Pn.
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This linear series determines a map ψd : Pn → P |n|. If we write t0, t1, . . . , t|n| for the 
coordinates on P |n| this map is determined by sending ti → gi. The map φ factors as the 
composition of two maps: α : Pn → Pn and ψ1 : Pn → P |n| where the map α is given 
by sending xi → xd1

i and yj → yd2
j

Pn P |n|

Pn

ψd

α ψ1

.

Since the linear series determining α is clearly base-point free it is enough to show that 
the linear series determining ψ1, namely L(n, 1), is base-point free. Phrased differently 
since α∗L(n, 1) is equal to L(n, d) we may reduce to the case when d = 1. This case 
was proven in [16, Proposition 5.2]. �

Since L is generated by a linear regular sequence on S(b; d), quotienting by L does 
not change the cohomology of the Koszul complex of (4).

Notation 3.7. Fix n = (n1, n2) ∈ Z2
≥1, d = (d1, d2) ∈ Z2

≥1, and b = (b1, b2) ∈ Z2. We let 
KR

p,q(S(b; d)) denote the cohomology of the following chain complex

· · ·
∧p+1

Sd ⊗ S(q−1)d+b
∧p

Sd ⊗ Sqd+b
∂p+1

∧p−1
Sd ⊗ S(q+1)d+b · · ·∂p

. (12)

Corollary 3.8. Fix n = (n1, n2) ∈ Z2
≥1, d = (d1, d2) ∈ Z2

≥1, and b = (b1, b2) ∈ Z2. If 
(n, b; d) satisfies Assumption 1.4 then for all p, q ∈ Z≥0 there exists a natural isomor-
phism

Kp,q(n,b;d) KR
p,q(S(b;d)).∼

Proof. Combine Proposition 3.5 with Theorem 2.20 from [1]. �
4. Ideal membership for R

In this section, we turn our attention to describing when certain monomials are con-
tained in the ideal R introduced in Section 3. This highlights a significant challenge when 
generalizing the work of Ein, Erman, and Lazarsfeld from the case of a single projective 
space to a product of projective spaces. Namely, since there are no monomial regular 
sequences of length |n| + 1 on Pn, we must work with a regular sequence for which, 
the ideal membership question is more difficult. For example, describing when a given 
element of S is contained in R = 〈g0, g1, . . . , g|n|〉, is more complicated then determining 



362 J. Bruce / Journal of Algebra 649 (2024) 347–391
when an element is in 〈xd
0, x

d
1, . . . , x

d
n〉 ⊂ K[x0, x1, . . . , xn]. This section is dedicated to 

studying the ideal membership question for R.
Our approach to ideal membership for R is to make use of the fact that R is homoge-

neous with respect to a number of interesting gradings. For example, in Section 4.1
we introduce the notion of the modular degree of an element of S. This induces a 
(Z/〈d1〉)⊕n1+1⊕(Z/〈d2〉)⊕n2+1-grading on S that R is homogeneous with respect to. Us-
ing this grading we show that the ideal membership question for R(n, d) can be reduced 
to the ideal membership question for R(n, 1).

Having reduced the question of ideal membership to the case when d = 1, we then 
introduce the notion of the index weighted degree, which induces a non-standard Z-
grading on S. The index weighted grading allows us to discuss the K-vector space Sa,k
spanned by monomials of bi-degree a and index weighted degree k. Using this refinement 
together with a series of spectral sequence arguments we gain insight into the ideal 
membership question for R(n, 1). For example, we prove the following:

Theorem 4.1. Fix n = (n1, n2) ∈ Z2
≥1, a = (a1, a2) ∈ Z2

≥0, and k ∈ Z≥0. If a and k
satisfy one of the following inequalities:

(1) a1 ≥ 1 and a2 ≥ n1 + 1,
(2) a2 ≥ 1 and a1 ≥ n2 + 1,
(3) 0 ≤ k ≤ a1a2 − 1, or

then Sa,k = R(1)a,k. Moreover, if k = a1a2 then dimSa,k = dimR(1)a,k − 1.

Combining these arguments gives us a detailed understanding of what monomials 
are in R(d). This, in turn, allows us to understand the ideal quotient (R :S f) for 
particular polynomials f ∈ S, and this provides the range of non-vanishing appearing in 
Theorem A.

4.1. The modular degree on S

Throughout this section given v = (v1, v2 . . . , vn) ∈ Zn and d ∈ Z we write v mod d

to mean (v1 mod d, v2 mod d, . . . , vn mod d) ∈ (Z/〈d〉)n. Further, we use the following 
multi-index notation for monomials in S and S.

Notation 4.2. Given v = (v0, v1, . . . , vn1) ∈ Zn1+1
≥0 and w = (w0, w1, . . . , wn2) ∈ Zn2+1

≥0
write xvyw for the monomial:

xvyw =
n1∏
i=0

xvi
i

n2∏
j=0

y
wj

j ∈ S.

With this notation in hand, we define the modular degree of a monomial in S as 
follows.
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Definition 4.3. Fix n = (n1, n2) ∈ Z2
≥1 and d = (d1, d2) ∈ Z2

≥1. Given a monomial 
xvyw ∈ S we define its modular degree to be:

mod.deg (xvyw) = (v mod d1,w mod d2) ∈ (Z/〈d1〉)⊕n1+1 ⊕ (Z/〈d2〉)⊕n2+1
.

Immediate from the definition we see that the modular degree induces a (Z/〈d1〉)⊕n1+1

⊕ (Z/〈d2〉)⊕n2+1-grading on S as follows

S ∼=
⊕

α∈(Z/〈d1〉)⊕n1+1⊕(Z/〈d2〉)⊕n2+1

Sα

where Sα is the K-vector space spanned by monomials m ∈ S such that mod.deg(m) = α. 
We call this the modular grading and R is homogeneous with respect to it.

Lemma 4.4. Fix n = (n1, n2) ∈ Z2
≥1 and d = (d1, d2) ∈ Z2

≥1. The modular degree gives 
S a (Z/〈d1〉)⊕n1+1⊕ (Z/〈d2〉)⊕n2+1-grading. Moreover, the ideal R is homogeneous with 
respect to this grading.

Proof. To show that the modular degree induces a grading on S it is enough to show that 
if m, m′ ∈ S are monomials then mod.deg(m ·m′) is equal to mod.deg(m) +mod.deg(m′). 
This follows from the fact that Z/〈di〉 is an abelian group.

Shifting to showing that R = 〈g0, g1, . . . , g|n|〉 is homogeneous with respect to this 
grading it is enough to show that each of the generators is homogeneous. Towards this 
recall that

gt =
∑

i+j=t
0≤i≤n1
0≤j≤n2

xd1
i yd2

j ,

and so each term in gt has modular degree 0 meaning gt is homogeneous with respect 
to this grading. �

The key property of the modular grading on S is that thinking of S[d] :=
K[xd1

0 , xd1
1 , . . . , xd1

n1
, yd2

0 , yd2
1 , . . . , yd2

n2
] as a sub-ring of S then Sα is a free rank one S[d]-

module for every α ∈ (Z/〈d1〉)⊕n1+1 ⊕ (Z/〈d2〉)⊕n2+1. Given a monomial xvyw ∈ Sα

then by the division algorithm we may write vi = qid1 + ri and wi = q′id2 + r′2 where 
0 ≤ ri < d1 and 0 ≤ r′i < d2. This allows us to write xvyw as

xvyw =
(

n1∏
i=0

xri
i

n2∏
i=0

y
r′i
i

)
︸ ︷︷ ︸

I

(
n1∏
i=0

xqid1
i

n2∏
i=0

y
q′id2
i

)
︸ ︷︷ ︸

II

,

where II is a monomial in S[d] and I is a monomial determined entirely by the modular 
degree of xvyw.
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Definition 4.5. Given a monomial xvyw ∈ S we define remd(xvyw) to be the monomial

remd (xvyw) =
(

n1∏
i=0

xri
i

n2∏
i=0

y
r′i
i

)
∈ S,

where by the division algorithm vi = qid1 + ri and wi = q′id2 + r′2 with 0 ≤ ri < d1 and 
0 ≤ r′i < d2.

Example 4.6. Let n = (1, 2) so that S = K[x0, x1, y0, y1, y2] and set d = (3, 5). If f =
x5

0x
3
1y

6
0y

11
1 y8

2 then the modular degree of f is ((2, 0), (1, 1, 3)) and remd(f) = x2
0y0y1y

3
2 . 

Any element of modular degree ((2, 0), (1, 1, 3)) can be written as x2
0y0y1y

3
2 times an 

element of S[d]. For example, g = x11
0 y0y

6
1y

103
2 also has modular degree ((2, 0), (1, 1, 3)), 

and we may write it as remd(f) · x3·3
0 y5

1y
20·5
2 .

Fixing a modular degree α ∈ (Z/〈d1〉)⊕n1+1 ⊕ (Z/〈d2〉)⊕n2+1 every monomial in 
Sα has the same remainder. In particular, the ri and r′i in Definition 4.5 are uniquely 
determined by α and the requirement that 0 ≤ ri < d1 and 0 ≤ r′i < d2. Thus, we may 
extend Definition 4.5 to all polynomials f ∈ Sα by setting remd(f) = remd(xvyw) for 
any monomial xvyw appearing in f .

Example 4.7. Continuing Example 4.6 let S = K[x0, x1, y0, y1, y2] and d = (3, 5). If f =
x5

0x
3
1y

6
0y

11
1 y8

2 + x8
0x

9
1y

11
0 y6

1y
3
2 then the modular degree of f is ((2, 0), (1, 1, 3)). Moreover,

remd(f) = remd
(
x5

0x
3
1y

6
0y

11
1 y8

2
)

= remd
(
x8

0x
9
1y

11
0 y6

1y
3
2
)

= x2
0y0y1y

3
2 .

We can then write f as a product of remd(f) and an element of S[d] as follows:

f = x2
0y0y1y

3
2 ·
(
x3

0x
3
1y

5
0y

10
1 y5

2 + x6
0x

9
1y

10
0 y5

1
)

= remd(f) ·
(
x3

0x
3
1y

5
0y

10
1 y5

2 + x6
0x

9
1y

10
0 y5

1
)
.

Lemma 4.8. Fix n = (n1, n2) ∈ Z2
≥1 and d = (d1, d2) ∈ Z2

≥1. For any α ∈
(Z/〈d1〉)⊕n1+1⊕(Z/〈d2〉)⊕n2+1 the vector space Sα is a free rank one S[d]-module, which 
is generated by remd(f) for any f ∈ Sα.

Proof. First let us check that Sα has the structure of a S[d]-module. This amounts 
to showing that Sα is closed under multiplication by elements in S[d]. Since S[d] is 
generated by monomials of bi-degree d we further reduce to showing Sα is closed under 
multiplication by xd1

i and yd2
j for i = 0, 1, . . . , n1 and j = 0, 1, . . . , n2. This follows 

immediately from the definition of the modular degree.
Turing our attention to showing that Sα is free of rank one fix α ∈ (Z/〈d1〉)⊕n1+1 ⊕

(Z/〈d2〉)⊕n2+1, let xvyv ∈ Sα be a monomial. By the division algorithm we may write 
vi = qid1 + ri and wi = q′id2 + r′2 where 0 ≤ ri < d1 and 0 ≤ r′i < d2. One readily checks 
that
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xvyw =
(

n1∏
i=0

xri
i

n2∏
i=0

y
r′i
i

)(
n1∏
i=0

xqid1
i

n2∏
i=0

y
q′id2
i

)
= remd (xvyw)

(
n1∏
i=0

xqid1
i

n2∏
i=0

y
q′id2
i

)
.

Moreover, since ri and r′i determine the modular degree of xvyw we see that every 
monomial in Sα is of the form m · remd(xvyw) for a unique m ∈ S[d]. �

We now state a few basic properties regarding remd(f) that follows immediately from 
the previous lemma.

Lemma 4.9. Fix n = (n1, n2) ∈ Z2
≥1 and d = (d1, d2) ∈ Z2

≥1. If f, g ∈ S are homogeneous 
with respect to the modular grading then

(1) f is divisible by remd(f),
(2) f/ remd(f) ∈ S[d], and
(3) mod.deg f = mod.deg g if and only if remd(f) = remd(g).

Finally, the following proposition shows how the modular grading can be used to 
reduce the ideal membership question for R(d) to the ideal membership question for 
R(1). Before stating it, however, we fix the following notation that given a monomial 
m ∈ S[d] we let m1/d be the monomial that is the image of m under the isomorphism:

S[d] S xd1
i xi yd1

i yi
1/d

.

Proposition 4.10. Fix n = (n1, n2) ∈ Z2
≥1 and d = (d1, d2) ∈ Z2

≥1. Let f ∈ S

be homogeneous with respect to the modular grading then f ∈ R(d) if and only if 
(f/ remd(f))1/d ∈ R(1).

Proof. By definition f ∈ R(d) if and only if there exists hi ∈ S such that:

f =
|n|∑
i=0

higi.

Now since f is homogeneous with respect to the modular grading without loss of 
generality we may assume that the hi are also homogeneous with respect to the mod-
ular grading. Moreover, by Lemma 4.4 the modular degree of gt is equal to 0, and 
so mod.deg f = mod.deg hi. In particular, by part (3) of Lemma 4.9 we know that 
remd(f) = remd(hi). By part (1) Lemma 4.9 we know that f is divisible by remd(f), 
and so combining these we have that f ∈ R(d) if and only if:

f

remd(f) =
|n|∑ higi

remd(f) =
|n|∑ hi

remd(hi)
gi.
i=0 i=0
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By part (2) of Lemma 4.9 the above relation is actually a relation in the subring S[d]. 
Since under the isomorphism −1/d the image of R(d) is R(1), we see that f ∈ R(d) if 
and only if (f/ remd(f))1/d ∈ R(1). �
4.2. The index weighted degree

If we look at one of the generators of R(d) we see that the lower indices of each term 
all sum to the same thing. For example, g1 = xd1

0 yd2
1 +xd1

1 yd2
0 and the lower indices of each 

term sum to one. We exploit this symmetry by introducing a non-standard Z-grading on 
S, which we call the index weighted grading, which R is homogeneous with respect to. 
Using this grading we will prove Theorem 4.1, and state a conjecture describing exactly 
when Sa,k = R(1)a,k.

Definition 4.11. Fix n = (n1, n2) ∈ Z2
≥1 and d = (d1, d2) ∈ Z2

≥1. The index weighted 
grading on S is the non-standard Z-grading given by letting index.degxi = d2i and 
index.deg yj = d1j for i = 0, 1, . . . , n1 and j = 0, 1, . . . , n2.

The important property of the index weighted grading is that R is homogeneous with 
respect to it.

Lemma 4.12. Fix n = (n1, n2) ∈ Z2
≥1 and d = (d1, d2) ∈ Z2

≥1. The ideal R is homoge-
neous with respect to the index weighted grading.

Proof. Recall that R = 〈g0, g1 . . . , g|n|〉 where for 0 ≤ t ≤ |n|:

gt =
∑

i+j=t
0≤i≤n1
0≤j≤n2

xd1
i yd2

j .

Suppose xd1
i yd2

j is a term appearing in gt so that i + j = t. Now we have that:

index.deg
(
xd1
i yd2

j

)
= d1d2i + d1d2j = d1d2(i + j) = d1d2t,

and so each term of gt has the same index weighted degree meaning R is homoge-
neous. �
Definition 4.13. Given a ∈ Z2 and k ∈ Z we write Sa,k (respectively Sa,k and Ra,k) for 
the K-vector space spanned by monomials in S (respectively S and I) of bi-degree a and 
index weighted degree k.

The following conjecture describes exactly the a ∈ Z2 and k ∈ Z for which R(1)a,k
is equal to Sa,k. Combined with Proposition 4.10 this provides a partial answer for the 
ideal membership question for R.
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Conjecture 4.14. Fix n = (n1, n2) ∈ Z2
≥1 and let d = 1. Given a = (a1, a2) ∈ Z2

≥0 and 
k ∈ Z≥0 we have that dimSa,k = 0 if and only if a and k satisfy one of the following 
inequalities:

(1) a1 ≥ 1 and a2 ≥ n1 + 1,
(2) a2 ≥ 1 and a1 ≥ n2 + 1,
(3) 0 ≤ k ≤ a1a2 − 1, or
(4) k ≥ a1n1 + (n2 − a1)a2 + 1.

Moreover, if k = a1a2 or k = a1n1 + (n2 − a1)a2 then dimSa,k = 1.

While we are unable to prove the full conjecture, we do prove a large portion of it. 
In particular, the remaining portion of this section is dedicated to proving Theorem 4.1. 
This shows that conditions (1), (2), and (3) imply dimSa,k = 0, as well as proves that 
Sa,a1a2 is one dimensional.

First, using a hypercohomology spectral sequence argument we prove parts (1) and 
(2) of Theorem 4.1. This establishes the sufficiency of conditions (1) and (2) in Conjec-
ture 4.14.

Proof of Part (1) and (2) of Theorem 4.1. Let d = 1 and consider the Koszul complex 
of OPn-modules defined on g0, g1, . . . , g|n|:

F• :=
[

0 OPn O⊕(|n|+1)
Pn (−1)

· · · · · · OPn(−(|n| + 1) · 1) 0
]
.

More precisely F• is the Koszul complex of OPn-modules where Fi = OPn(−i ·1)⊕(|n|+1
i ). 

Notice that this complex is quasi-isomorphic to zero. Given a = (a1, a2) ∈ Z2 we write 
F(a)• for the complex F• ⊗ OPn(a). Consider the hypercohomology spectral sequence 
associated to the complex F(a)•, and the global sections functor Γ (−,OPn), which is 
defined by:

E1
p,q = RqΓ (F(a)p) = Hq (Pn,F(a)p) .

This spectral sequence abuts to Hp−q (F(a)•), which since F• is quasi-isomorphic to zero 
is zero. The E1 page of this spectral sequence looks like:
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|n| H|n|(Pn,F(a)0) H|n|(Pn,F(a)1) · · · H|n|(Pn,F(a)n) H|n|(Pn,F(a)|n|+1
)

|n|−1 H|n|−1(Pn,F(a)0) H|n|−1(Pn,F(a)1) · · · H|n|−1(Pn,F(a)|n|
)

H|n|−1(Pn,F(a)|n|+1
)

...
...

...
. . .

... · · ·

1 H1(Pn,F(a)0) H1(Pn,F(a)1) · · · H1(Pn,F(a)|n|
)

H1(Pn,F(a)|n|+1
)

0 H0(Pn,F(a)0) H0(Pn,F(a)1) H0(Pn,F(a)|n|
)

H0(Pn,F(a)|n|+1
)

0 1 · · · |n| |n|+1

By the Künneth formula [38, Tag 0BEC] the only possible q for which Hq(Pn,

OPn(a1, a2)) is non-zero is q = 0, n1, n2, and |n|. More specifically:

Hq (Pn,OPn(a1, a2))

∼=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
K(n1+a1

a1
) ⊗K(n2+a2

a2
) if q = 0 and a1 ≥ 0, a2 ≥ 0

K( −a1−1
−n1−a1−1) ⊗K(n2+a2

a2
) if q = n1 and a1 ≤ −n1 − 1, a2 ≥ 0

K(n1+a1
a1

) ⊗K( −a2−1
−n2−a2−1) if q = n2 and a1 ≥ 0, a2 ≤ −n2 − 1

K( −a1−1
−n1−a1−1) ⊗K( −a2−1

−n2−a2−1) if q = n1 + n1 and a1 ≤ −n1 − 1, a2 ≤ −n2 − 1

.

Using this we see that the only non-zero entries on the E1 page occur in rows q = 0, n1, n2, 
and |n|. In fact, the only spots (p, q) on the first page of this spectral sequence, which 
are non-zero are:

(1) (p, 0) for p in the range p ≤ min{a1, a − 2, |n| + 1},
(2) (p, n1) for p in the range a1 + n1 + 1 ≤ p ≤ min{a2, |n| + 1},
(3) (p, n2) for p in the range a2 + n2 + 1 ≤ p ≤ min{a1, |n| + 1}, and
(4) (p, |n|) for p in the range max{a1 + n1 + 1, a2 + n2 + 1} ≤ p ≤ |n| + 1.

Now consider the E2 page of the spectral sequence. Since F•(a) is a Koszul complex 
twisted by OPn(a) on this page the 0th row is nothing but the degree (a1, a2) strand on 
the Koszul complex. Moreover, since the cokernel of the Koszul complex is S we have 
that E2

0,0
∼= Sa.

On the jth page of this spectral sequence the map to Ej
0,0 has source Ej

j,j−1. By 

considering the E1 page this means the only maps to the Ej
0,0 that may be non-trivial 

occur when j = 1, n1 + 1, n2 + 1, and |n| + 1. We have already described the map on the 
E1 page, and so consider the remaining cases.
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• Page n1 + 1: On the En1+1 page the map to En1+1
0,0 has source En1+1

n1+1,n1
. Thus, for 

this map to be trivial it suffices for E1
n1+1,n1

= 0. By our description of the E1 page 
above this is true if and only if n1 + 1 < a1 +n1 + 1. So if a1 ≥ 1 then E1

n1+1,n1
= 0, 

and so the map to En1+1
0,0 is zero.

• Page n2 + 1: On the En2+1 page the map to En2+1
0,0 has source En2+1

n2+1,n2
. Thus, for 

this map to be trivial it suffices for E1
n2+1,n2

= 0. By our description of the E1 page 
above this is true if and only if n2 + 1 < a2 +n2 + 1. So if a2 ≥ 1 then E1

n2+1,n2
= 0, 

and so the map to En2+1
0,0 is zero.

• Page |n| + 1: On the E|n|+1 page the map to E|n|+1
0,0 has source E|n|+1

|n|+1,|n|. Thus, for 
this map to be trivial it suffices for E1

|n|+1,|n| = 0. By our description of the E1

page above this is true if and only if |n| + 1 < min{a1 + n1 + 1, a2 + n2 + 1}. So if 
a1 ≥ n2 + 1 or a2 ≥ n1 + 1 then E1

|n|+1,|n| = 0, and so the map to E|n|+1
0,0 is zero.

Thus, if a1, a2 ≥ 1 and either a1 ≥ n2 + 1 or a2 ≥ n1 + 1 there are no non-zero maps to 
Ej

0,0 for j ≥ 2. Since this spectral sequence abuts to zero E2
0,0

∼= Sa ∼= 0. �
We now shift to showing that condition (3) of Conjecture 4.14 implies the stated 

vanishing. Before proving this in full we first consider the special case when a1 = 1. This 
will be useful as a base case for our inductive proof of Proposition 4.16.

Lemma 4.15. Fix n = (n1, n2) ∈ Z2
≥1 and let d = 1. Given a = (1, a2) ∈ Z2

≥1 if k ≤ a2−1
then dimSa,k = 0.

Proof. It is enough to show that if m ∈ Sa,k is a monomial then m ∈ R(n, 1). Now any 
monomial m ∈ Sa,k is of the form m = x�m

′ where m′ is a monomial of bi-degree (0, a2)
and index weighted degree k − � supported on y0, y1, . . . , yn2 . Since the index weighed 
degree of m is less than or equal to a2 − 1 the index weighted degree of m′ is less than 
a2 − (� +1). Thus, we may write m′ as m′ = y�+1

0 m′′ where m′′ is a monomial supported 
on y0, y1, . . . , yn2 . So it is enough to show that x�y

�+1
0 ∈ R(n, 1).

Towards this we show that x�y
�+1
0 ∈ R(n, 1) for � = 0, 1, . . . , n1 by induction on �. 

The base case when � = 0 is clear since x�y
�+1
0 = g0. Now suppose the x�′y

�′+1
0 ∈ R(1)

for all 0 ≤ �′ < �. We may write x�y
�+1
0 as

x�y
�+1
0 = x�y0y

�
0 =

(
g� −

�∑
i=1

x�−iyi

)
y�0,

and so it is enough to show that 
(∑�

i=1 x�−iyi

)
y�0 is in R(1). However, each term in 

this sum is of the form x�−iy
�−i
0 yiy

i
0, which by the inductive hypothesis is contained in 

R(n, 1). �
Proposition 4.16. Fix n ∈ Z2

≥1 and let d = 1. Given a = (a1, a2) ∈ Z2
≥1 if 0 ≤ k ≤

a1a2 − 1 then dimSa,k = 0.
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Proof. Fix n = (n1, n2) ∈ Z2
≥1, a = (a1, a2) ∈ Z2, and k ∈ Z such that k ≤ a1a2 − 1. 

Without loss of generality we assume that n2 ≤ n1, and that a2 ≤ n1 since if 
a2 > n1 then dimSa,k = 0 by parts (1) and (2) of Theorem 4.1. We now proceed 
by induction on n1 + a1. Note that the base case when a1 = n1 = 1 follows imme-
diately from Lemma 4.15. Our inductive hypothesis can now be stated as follows: Let 
S′ = K[x0, x1, . . . , xn′

1
, y0, y1, . . . , yn2 ], which we consider with the natural bi-grading, 

and write S
′ for S′/R(n′

1, n2, 1). If (a′1, a2) ∈ Z2
≥1 and n′

1 + a′1 < n1 + a1 then 

dimS
′
(a′

1,a2),k = 0 for all 0 ≤ k ≤ a′1a2 − 1.
Now since R(n, 1) is homogeneous with respect to the bi-grading and index weighted 

grading, Lemma 4.12, after shifting accordingly we may consider the exact sequence

0 (0 : xn1) S S S/〈xn1〉 0
·xn1

as an exact sequence of graded modules with respect to either the bi-grading or index 
weighted grading. This gives the following:

dimSa,k = dimS(a1−1,a2),k−n1 + dimS/〈xn1〉a,k − dim(0 : xn1)(a1−1,a2),k−n1 .

Notice that if dimS(a1−1,a2),k−n1 = 0 then dim(0 : xn1)(a1−1,a2),k−n1 = 0 since (0 :
xn1) ⊂ S. Thus, for the inductive step, it is enough for both dimS(a1−1,a2),k−n1 and 
dimS/〈xn1〉a,k to equal zero.

First we show that dimS(a1−1,a2),k−n1 is equal to zero. Notice that by applying the 
inductive hypothesis in the case when n′

1 = n1 and a′1 = a1 −1, it is enough for k−n1 ≤
(a1 − 1)a2 − 1 = a1a2 − a2 − 1. This inequality is true since by our initial assumptions 
k ≤ a1a2 − 1 and a2 ≤ n1.

Now we show that dimS/〈xn1〉a,k is equal to zero. By Lemma 3.4 there is an iso-
morphism between S/〈xn1〉 and S

′ when n′
1 = n1 − 1. In particular, the dimension of 

S/〈xn1〉a,k is equal to the dimension of S′
a,k. Applying the inductive hypothesis when 

n′
1 = n1 − 1 and a′1 = a1, we conclude that dimS/〈xn1〉a,k = dimSa,k = 0. �
We end this section by proving the last remark of Theorem 4.1. Before proving the 

full claim we first consider the special case when a1 = n2 and a2 = n1.

Proposition 4.17. Fix n = (n1, n2) ∈ Z2
≥0, and let d = 1. The dimension of Sn2,n1,n1n2

is one.

Proof. We use a hypercohomology spectral sequence argument similar to the one used 
in the proof of parts (1) and (2) of Theorem 4.1. In particular, let d = 1 and consider 
the Koszul complex F• of OPn-modules defined on g0, g1, . . . , g|n|. Notice this complex 
is quasi-isomorphic to zero.

Writing F(a)• for the complex F•⊗OPn(a), we consider the hypercohomology spectral 
sequence associated to the complex F(a)• and the global sections functor Γ (−,OPn), 
which is defined by:
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E1
p,q = RqΓ (F(a)p) = Hq (Pn,F(a)p) .

This spectral sequence abuts to Hp−q (F(a)), which is zero since F• is quasi-isomorphic 

to zero. Using the fact that Fi = OPn(−i ·1)⊕(|n|+1
i ) if a1 = n2 and a2 = n1 the E1 page 

of this spectral sequence looks like:

|n| 0 0 · · · 0 K

|n|−1 0 0 · · · 0 0

...
...

...
. . .

... · · ·

1 0 0 · · · 0 0

0 H0(Pn,F(a)0) H0(Pn,F(a)1) H0(Pn,F(a)|n|
)

H0(Pn,F(a)|n|+1
)

0 1 · · · |n| |n|+1

Since F•(n2, n1) is the Koszul complex resolving OY twisted by OPn(n2, n1) notice that 
the 0th row on this page is nothing but the degree (n2, n1)-strand of the Koszul complex 
resolving R(1). In particular, since the co-kernel of the Koszul complex resolving R(1)
is S we know that E2

0,0 is isomorphic to S(n2,n1).
A cohomology computation, similar to the one done in the proof of parts (1) and 

(2) of Theorem 4.1, shows that every map to Ej
0,0 has trivial source except when 

j = 1 and j = |n| + 1. Thus, E|n|+1
0,0

∼= E2
0,0S(n2,n1). Likewise since there are no non-

trivial maps to Ej
|n|+1,|n| we know that E|n|+1

|n|+1,|n|
∼= E1

|n|+1,|n| and is isomorphic to 

H |n|+1(Pn, OPn(−n1 − 1, −n2 − 1)).
The above spectral sequence comes from the bi-complex given by tensoring the Čech 

complex on Pn with the Koszul complex on g0, g1, . . . , g|n|. Since both of these complexes 
are homogeneous with respect to the index weighted grading the resulting bi-complex, 
and hence the associated spectral sequence are also homogeneous with respect to the 
index weighted grading. Thus all vector spaces and differentials appearing in the various 
pages of the spectral sequence will be graded with respect to the index degree. We would 
like to determine the index degree of 1-dimensional vector space H |n|+1(Pn, OPn(−n1 −
1, −n2 − 1). We compute this as follows: the last term of the Koszul complex is a rank 
1-module generated in index weighted degree 

∑
i index.deg(gi). The generator of the 1-

dimensional vector space H |n|+1(Pn, OPn(−n1 − 1, −n2 − 1) corresponds to the Laurent 
monomial 1 . So this vector space has index weighted degree:
x0x1···xn1y0y1···yn2
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|n|∑
i=0

index.deg(gi) − index.deg

⎛⎝ n1∏
i=0

1
xi

n2∏
j=1

1
yj

⎞⎠ =
|n|∑
i=0

i−
n1∑
j=0

j −
n2∑
k=0

k

=
(
n1 + n2

2

)
−
(
n1

2

)
−
(
n2

2

)
= n1n2.

On the (|n| + 1)-th there is a non-trivial map from E|n|+1
|n|+1,|n| to E|n|+1

0,0 . Moreover, 
since this spectral sequence abuts to zero this map must be an isomorphism. Us-
ing that E|n|+1

|n|+1,|n|
∼= H |n|+1(Pn, OPn(−n1 − 1, −n2 − 1)) and E|n|+1

0,0
∼= S(n2,n1). As 

H |n|+1(Pn, OPn(−n1 − 1, −n2 − 1)) ∼= K this shows that dimSn2,n1 = 1. Since this iso-
morphism respects the index weighted grading it follows that the 1-dimensional vector 
space of bi-degree S(n2,n1) will be supported entirely in index weighted degree n1n2. �

Finally, we complete the proof of Theorem 4.1 by proving the last claim that 
dimSa,a1a2 = 1.

Proof of Theorem 4.1. We proceed by induction upon n1 + n2. For the base case note 
that when n1 = n2 = 1 the claim is clear as the only case is when a1 = a2 = 1, which 
follows from Proposition 4.17. Now suppose that a1 ≤ n2 and a2 ≤ n1. Since we have 
already proven the claim when a1 = n2 and a2 = n1 without loss of generality we may 
suppose that a2 < n1. Considering the exact sequence

0 (0 : xn1) S S S/〈xn1〉 0
·xn1

we see that:

dimSa,a1a2 = dimS(a1−1,a2),a1a2−n1 + dimS/〈xn1〉a,a1a2 − dim(0 : xn1)(a1−1,a2),a1a2−n1 .

As a2 ≤ n1 − 1 we see that a1a2 − n1 ≤ (a1 − 1)a2 − 1. So by Proposition 4.16
dimS(a1−1,a2),a1a2−n1 = 0, which implies that dim(0 : xn1)(a1−1,a2),a1a2−n1 = 0
as (0 : xn1) ⊂ S. Thus, is enough for dimS/〈xn1〉a,a1a2 = 1. Letting S′ =
K[x0, x1, . . . , xn1−1, y0, y1, . . . , yn2 ] with the natural bi-grading by Lemma 3.4 there is an 
isomorphism between S/〈xn1〉 and S′/R((n1−1, n2), d). In particular, dimS/〈xn1〉a,a1a2

is equal to dimS′/R((n1 − 1, n2), d)a,a1a1 , which by the inductive hypothesis is equal to 
one. �
5. Non-vanishing via generalized monomial methods

Our main result shows how to construct non-zero syzygies on Pn from monomials 
in S. This generalizes Lemma 2.3 and Corollary 2.4 in [11] to a product of projective 
spaces. There are two key hurdles in order to generalize these results to our setting of 
products of projective spaces.

First, since Ein, Erman, and Lazarsfeld use a monomial ideal to perform their Artinian 
reduction the analogy of the ring S in their paper comes with a very natural vector space 
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basis. In our setting, S does not come with any such natural basis. This causes a bit of 
subtly because the sets of monomials we are working with no longer need to be linearly 
independent. We circumvent this issue by phrasing our generalization of Corollary 2.4 in 
terms of the dimension of the span of certain sets of monomials as opposed to just the 
size of the set.

Second the condition of one monomial dividing another monomial used in [11] can be 
weakened to a condition on the index weighted degree. This turns out to be crucial as 
the notion of when two monomials divide each other in S is more difficult to understand 
since our regular sequence is not generated by monomials. Before stating and proving 
this we first establish a few definitions and background results.

Definition 5.1. An element f ∈ S is a monomial of degree d if and only if there exists a 
monomial m ∈ Sd such that m = f where m is the image of m in S.

Definition 5.2. An element ζ⊗f ∈
∧s

S⊗S is a monomial if and only if ζ = m1∧· · ·∧ms

where each mi ∈ S and f ∈ S are monomials.

Definition 5.3. Given a finite subset P ⊂ S we write detP for the wedge product of all 
elements in P , and say ζ ∈

∧s
P if ζ = f1 ∧ · · · ∧ fs where fi ∈ P for all i.

Lemma 5.4. Let φ : V → W be a map of finite dimensional K-vector spaces, 
{v1, v2, . . . , vn} be a basis for V , and {w1, w2, . . . , wm} be a basis for W . If there ex-
ists I ⊂ {1, 2, . . . , n} and bi ∈ K× such that

w1 =
∑
i∈I

φ(bivi)

then there exists an i ∈ I such that if we express φ(vi) in the given basis as

φ(bivi) = c1w1 + c2w2 + · · · + cmwm

where ci ∈ K then c1 �= 0.

Proof. Towards a contradiction suppose that

φ(bivi) = ci,1w1 + ci,2w2 + · · · + ci,mwm

and ci,1 = 0 for all i ∈ I. This means that

w1 =
∑
i∈I

φ(bivi) =
∑
i∈I

(ci,2w2 + · · · + ci,mwm)

which contradicts the fact that {w1, w2 . . . , wm} is a basis for W . �
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With this lemma and these definitions in hand, we can now state the key proposition 
of this section.

Proposition 5.5. Fix n = (n1, n2) ∈ Z2
≥1, d = (d1, d2) ∈ Z2

≥1, b = (b1, b2) ∈ Z2, and 
0 ≤ q ≤ |n|. Let f ∈ Sqd+b be a non-zero monomial, and let

L(f) :=
{

m
a monomial

of bi-degree d

∣∣∣∣ index.degm ≤ index.deg f
}

⊂ Sd

Z(f) :=
{

m
a monomial

of bi-degree d

∣∣ mf = 0
}

⊂ Sd

be the set of monomials of bi-degree d and of index weighted degree less than f and the 
set of annihilators of f of bi-degree d respectively. Consider the Koszul complex:

· · ·
∧p+1

Sd ⊗ S(q−1)d+b
∧p

Sd ⊗ Sqd+b
∂p+1

∧p−1
Sd ⊗ S(q+1)d+b · · ·∂p

(1) Given ζ ∈
∧p

Z(f) the element ζ ⊗ f ∈ ker ∂p.
(2) Given ζ ∈

∧s
Sd such that (detL(f) ∧ ζ) ⊗ f �= 0 then (detL(f) ∧ ζ) ⊗ f �∈

img ∂#L(f)+s+1.

Proof. First, let us focus our attention on part (1). By definition, since ζ ∈
∧p

Z(f) we 
may write it as ζ = ζ1 ∧ ζ2 ∧ · · · ∧ ζp where ζi ∈ Z(f) ⊂ Sd. Thus, we see that

∂p (ζ ⊗ f) = ∂p (ζ1 ∧ ζ2 ∧ · · · ∧ ζp ⊗ f) =
p∑

i=1
(−1)iζ1 ∧ ζ2 ∧ · · · ∧ ζ̂i ∧ · · · ∧ ζp ⊗ (ζif)

=
p∑

i=1
(−1)iζ1 ∧ ζ2 ∧ · · · ∧ ζ̂i ∧ · · · ∧ ζp ⊗ 0 = 0,

where the penultimate equality follows from the fact that ζi ∈ Z(f), and so by definition 
annihilates f .

We now shift to proving part (2). Towards a contradiction suppose that (detL(f) ∧
ζ) ⊗ f is non-zero and in the image of the map:∧#L(f)+s+1

Sd ⊗ S(q−1)d+b
∧#L(f)+s

Sd ⊗ Sqd+b
∂#L(f)+s+1 .

Since the set of monomials span 
∧#L(f)+s+1

Sd⊗S(q−1)d+b as a k-vector space we may 

pick a basis {ξ1 ⊗ g2, ξ1 ⊗ g2, . . . , ξT ⊗ gT } for 
∧#L(f)+s+1

Sd ⊗ S(q−1)d+b where each 
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ξj ⊗ gj is a monomial. Now by linearity of ∂#L(f)+s+1 the element (detL(f) ∧ ζ) ⊗ f is 
in the image of ∂#L(f)+s+1 if and only if there exists bj ∈ k such that

∂#L(f)+s+1

⎛⎝ T∑
j=1

bjξj ⊗ gj

⎞⎠ =
T∑

j=1
∂#L(f)+s+1 (bjξj ⊗ gj) = (detL(f) ∧ ζ) ⊗ f. (13)

Since (detL(f) ∧ ζ) ⊗ f is a non-zero monomial and the set of monomial span ∧#L(f)+s
Sd⊗Sqd+b we may choose a basis {(detL(f) ∧ζ) ⊗f, υ2⊗h2, . . . , υN ⊗hN} for ∧#L(f)+s
Sd⊗Sqd+b consisting of monomials. Thus, by Lemma 5.4 for Equation (13) to 

be true it must be the case that (detL(f) ∧ζ) ⊗f appears as a term in ∂#L(f)+s+1 (ξj ⊗ gj)
for some j. In particular, for some j there exists ci ∈ K such that:

∂#L(f)+s+1 (cjξj ⊗ gj) = (detL(f) ∧ ζ) ⊗ f + c2υ2 ⊗ h2 + · · · + cNυN ⊗ hN (14)

Since cjξj ⊗ gj is a non-zero monomial we may write cjξj ⊗ gj as n0 ∧ n1 ∧ · · · ∧
n#L(f)+s⊗g where g ∈ S(q−1)d+b is a non-zero monomial and n0, n1, . . . , n#L(f)+s ∈ Sd

are linearly independent monomials. For (detL(f) ∧ ζ) ⊗ f to appear as a term in 
∂#L(f)+s+1(n0 ∧ n1 ∧ · · · ∧ n#L(f)+s ⊗ g) – i.e. for (14) to be true, without loss of 
generality we have that

n1 ∧ n2 ∧ · · · ∧ n#L(f)+s ⊗ (n0g) = (detL(f) ∧ ζ) ⊗ f.

This implies two equalities:

(1) n1 ∧ n2 ∧ · · · ∧ n#L(f)+s = (detL(f) ∧ ζ) as elements in 
∧#L(f)+s

Sd, and
(2) n0g = f as elements in Sqd+b.

The second of these means that

index.deg(n0) + index.deg(g) = index.deg(n0g) = index.deg(f),

which implies that index.degn0 ≤ index.deg f meaning n0 ∈ L(f). However, combining 
this fact with the first equality we see that

n0 ∧ n1 ∧ · · · ∧ n#L(f)+s ⊗ g = n0 ∧ (detL(f) ∧ ζ) ⊗ g = 0

contradicting the fact that (detL(f) ∧ ζ) ⊗ f is non-zero. �
Immediately from Proposition 5.5 we are able to deduce a non-vanishing result giving 

non-trivial syzygies in a range determined by L(f) and Z(f). Note that in [11] the 
elements of the analogous L(f) and Z(f) are linearly independent, but in our setting, 
they need not be. As such we only get non-vanishing up to dim spanK Z(f) not #Z(f).
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Corollary 5.6. Fix n = (n1, n2) ∈ Z2
≥1, d = (d1, d2) ∈ Z2

≥1, and b = (b1, b2) ∈ Z2. 
Given 0 ≤ q ≤ |n| and 0 ≤ k ≤ q Let f ∈ Sqd+b be a non-zero monomial such that 
L(f) ⊂ Z(f) then KR

p,q

(
S(b;d)

)
�= 0 for all p in the range:

dim spanK L(f) ≤ p ≤ dim spanK Z(f). (15)

Proof. Fix p in the range given by (15), which allows us to write p as p =
dim spanK L(f) + s where s ∈ Z≥0. We may pick s linearly independent elements 
ζ1, ζ2, . . . , ζs ∈ (spanK Z(f) \spanK L(f)). Further, since the monomials span spanK L(f)
we may in fact choose the ζ1, ζ2, . . . , ζs to be linearly independent monomials. Set 
ζ = ζ1 ∧ ζ2 ∧ · · · ∧ ζs. Since the ζi are linearly independent in spanK L(f) ⊂ Sd we 
know that ζ is non-zero in 

∧s
Sd. By part (1) of Proposition 5.5 (ζ ∧ detL(f)) ⊗ f is in 

the kernel of ∂#L(f)+s, while by part (2) it is not in the image of ∂#L(f)+s+1. Hence it 
represents a non-zero element in KR

p,q

(
S(b;d)

)
. �

6. Special monomials

In Section 5 we showed that given a non-zero monomial f ∈ Sqd+b, satisfying certain 
technical conditions described in Proposition 5.5, one can construct a non-zero syzygy 
ζ1 ∧ ζ2 ∧ · · · ∧ ζp ⊗ f in KR

p,q(S(b; d)) where p is controlled in part by the annihilators of 
f . We now turn to describing the monomials f we will use in our proof of Theorem A.

Broadly, the idea is that having fixed 0 ≤ q ≤ |n| and b ∈ Z2 we will construct a 
non-zero monomial fq,k,b ∈ S of bi-degree qd for every 0 ≤ k ≤ q. Each fq,k,b will play 
the role of f in Proposition 5.5 and Corollary 5.6, and will produce non-trivial syzygies 
(assuming a few technical conditions) in the range(

d1 + k

k

)(
d2 + (q − k)

q − k

)
− (q + 2) ≤ p ≤ rn,d −

(
d1 + n1 − k

n1 − k

)(
d2 + n2 − (q − k)

n2 − (q − k)

)
− (|n| + 1).

Initially, we will not explicitly define fq,k,b. Instead, we utilize the fact that in cer-
tain degrees, described by Theorem 4.1, (S/R(1))a,t is one dimension. In particular, 
we define fq,k,b in terms of the generator of (S/R(1))(k,q−k),k(q−k), which we denote 
by f̃q,k. Thus, the first part of this section focuses on studying the generator f̃q,k of 
(S/R(1))(k,q−k),k(q−k). In particular, we show that these f̃q,k satisfy a series of recursive 
relations from which it is possible to explicitly write down f̃q,k.

Following this, in the second part of this section, we define fq,k,b and study its 
properties. Namely, we show that fq,k,b is well-defined, and then show that it is 
in fact non-zero in S. Moreover, we see that fq,k,b is supported on the variables 
x0, x1, . . . , xq−k, y0, y1, . . . , yk.

We then end this section by studying the linear annihilators of fq,k,b. For example, 
we show that if b = 0 then xifq,k,b and yjfq,k,b equal zero as elements of S for i =
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0, 1, . . . , (q − k − 1) and j = 0, 1, . . . , (k − 1). Understanding these linear annihilators of 
fq,k,b is crucial as it allows us to bound #Z(fq,k,b) appearing in Proposition 5.5 and 
Corollary 5.6.

6.1. Defining f̃q,k

As described in Theorem 4.1 for certain degrees (S/R(1))a,t is one dimensional. The 
goal of this section is to study the generator, unique up to scalar multiple, of (S/R(1))a,t. 
This is useful as the monomial fq,k,b we will define in the next subsection is built from 
these generators. In particular, many of our results about fq,k,b given later in this section 
are built on the understanding of the generator of (S/R(1))a,t.

Definition 6.1. Fix n = (n1, n2) ∈ Z2
≥1. Given 0 < q ≤ |n| and 0 ≤ k ≤ q such that 

q − k ≤ n1 and k ≤ n2 let f̃q,k be the unique, up to scalar multiplication, non-zero 
monomial in (S/R(1))(k,q−k),k(q−k).

A crucial property of f̃q,k, which is not immediately obvious from the definition, is 
that f̃q,k is supported on x0, x1, . . . , xq−k, y0, y1, . . . , yk. In fact, in f̃q,k is independent, 
up to the isomorphism described in Lemma 3.4, of the n so long as n1 ≥ q − k and 
n2 ≥ k. This is the content for the following lemmas.

Lemma 6.2. Fix n = (n1, n2) ∈ Z2
≥1, 0 < q ≤ |n| and 0 ≤ k ≤ q such that q − k ≤ n1

and k ≤ n2. Let S′ = K[x0, x1, . . . , xn1−i, y0, y1, . . . , yn2−j ]. If q − k ≤ n1 − i and 
k ≤ n2 − j and f̃ ′

q,k is the unique, up to scalar multiplication, non-zero monomial in 
(S′/R(1))(k,q−k),k(q−k) then f̃q,k = f̃ ′

q,k under the isomorphism described in Lemma 3.4.

Proof. By Lemma 3.4 there exists an isomorphism of K-vector spaces:(
S′

R((q − k, k),1)

)
(k,q−k),k(q−k)(

S
R(n,1)+〈xn1−i+1,xn1−i+2,...,xn1 ,yn2−j+1,yn2−j+2,...,yn2 〉

)
(k,q−k),k(q−k)

.∼

(16)

The final remark of Theorem 4.1 shows the left-hand side of (16) is one dimensional, and 
so right-hand side is also one dimension. That said since f̃q,k is defined to be a represen-
tative for the unique, up to scalar multiplication, generator of S/R(n, 1)(k,q−k),k(q−k), 
and so f̃q,k = f̃ ′

q,k under the isomorphism in (16). �
Lemma 6.3. Fix n = (n1, n2) ∈ Z2

≥1, 0 < q ≤ |n| and 0 ≤ k ≤ q such that q − k ≤ n1
and k ≤ n2. The following identities hold in S:
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(1) f̃q,k = xq−kf̃q−1,k−1,
(2) f̃q,k = ykf̃q−1,k,
(3) f̃q,k = xq−kyk−1f̃q−2,k−1, and
(4) f̃q,k = xq−k−1ykf̃q−2,k−1.

Proof. Parts (3) and (4) follow by combining parts (1) and (2). For part (1) consider a 
graded component of the maps induced by multiplication by xq−k:

(
S

R(1)

)
(k−1,q−k),(k−1)(q−k)

(
S

R(1)

)
(k,q−k),k(q−k)

xq−k
. (17)

By Theorem 4.1 both the source and target of the map in (17) are one dimensional 
K-vector spaces. Moreover, f̃q−1,k−1 is a generator for the left-hand, side and f̃q,k is a 
generator for the right-hand side. Thus, it is enough to show that xq−k divides f̃q,k.

Towards a contradiction suppose that xq−k does not divide f̃q,k. Letting S′ =
K[x0, x1, . . . , xq−k−1, y0, y1, . . . , yk] by Lemma 3.4 there is an isomorphism of K-vector 
spaces:

(
S′

R((q−k−1,k),1)

)
(k,q−k),k(q−k)

(
S

R(n,1)+〈xq−k,xq−k+1,...,xn1 〉

)
(k,q−k),k(q−k)

.∼

(18)
Part (1) of Theorem 4.1 implies the source of the map in (17) has dimension 
zero. However, by Lemma 6.2 f̃q,k is non-zero after quotienting S by R(n, 1) +
〈xq−k+1, xq−k+1, . . . , xn1〉. Thus, since f̃q,k is not divisible by xq−k it is non-zero in 
the target of (17). Hence the target of (17) has dimension one, which is a contradiction. 
Part (2) of this lemma follows from a similar argument. �
Remark 6.4. While we will not make use of this, notice that as a consequence of 
Lemma 6.3 we are able to write down an explicit representative for f̃q,k. Namely, as 
f̃q,0 has bi-degree (0, q) and index degree 0 we know f̃q,0 = yq0, and by a similar argu-
ment f̃q,q = xq

0. So using the inductive structure of Lemma 6.3 with these base cases we 
can find explicit representatives for f̃q,k. For example,

f̃5,2 = x3y1f̃3,1 = x3y1
(
x2y0f̃1,0

)
= x2x3y

2
0y1.

6.2. Defining fq,k,b

We are now ready to define fq,k,b in terms of f̃q,k. While in Theorem C we restrict our 
attention to the case when b ∈ Z2

≥0 we will define fq,k,b for a more general range of b. 
In particular, under a suitable hypothesis, we will allow b to have negative coordinates. 
One might hope that these more general fq,k,b’s may be used to extend Theorem C to 
additional cases of b, even though we do not carry this out here.
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Notation 6.5. Given a monomial xvyy in S (or S) we write (xvyy)d for the monomial 
xd1vyd2y in S (or S).

Definition 6.6. Fix n = (n1, n2) ∈ Z2
≥1, d = (d1, d2) ∈ Z2

≥1, and b ∈ Z2. Let 0 < q ≤ |n|
and 0 ≤ k ≤ q such that q − k ≤ n1 and k ≤ n2. If d1 > q − k + b1 and d2 > k + b2 then 
define fq,k,b to be:

fq,k,b :=
{

(x0 · · ·xq−1)d1−1
xq+b1
q yb20 f̃d

q,0 if k = 0
(x0 · · ·xq−k−1)d1−1

xq−k+b1
q−k (y0 · · · yk−1)d2−1

yk+b2
k f̃d

q,k if k �= 0
.

Note that from the definition it is not necessarily clear that fq,k,b is, in fact, an 
element of S. In particular, since b1 and b2 may be negative the terms xq−k+b1

q−k and yk+b2
k

appearing in the definition of fq,k,b need not be monomials. In fact, if both b1 and b2 are 
sufficiently negative fq,k,b is not an element of S.

However, the following lemma shows that as long as at least one of q − k + b1 and 
k + b2 are non-negative and d � b we need not worry about this except in a few edge 
cases (i.e. when k = 0 or k = q). The key insight is that the relations in Lemma 6.3
provide the following alternative definitions for fq,k,b when exactly one of q− k+ b1 and 
k + b2 is negative are immediate.

Lemma 6.7. Fix n = (n1, n2) ∈ Z2
≥1, d = (d1, d2) ∈ Z2

≥1, and b ∈ Z2. Let 0 < q ≤ |n|
and 0 ≤ k ≤ q such that q − k ≤ n1 and k ≤ n2.

(1) Suppose q− k+ b1 < 0 and k+ b2 ≥ 0. If d1 > |q− k+ b1| and k �= 0 then fq,k,b ∈ S

and

fq,k,b = (x0 · · ·xq−k−1)d1−1
xq−k+b1+d1
q−k (y0 · · · yk−1)d2−1

yk+b2
k f̃d

q−1,k−1.

(2) Suppose q − k + b1 ≥ 0 and k + b2 < 0. If d2 > |k + b2| then fq,k,b ∈ S and

fq,k,b =
{

(x0 · · ·xq−1)d1−1
xq+b1
q yb2+d2

0 f̃d
q−1,0 if k = 0

(x0 · · ·xq−k−1)d1−1
xq−k+b1
q−k (y0 · · · yk−1)d2−1

yk+b2+d2
k f̃d

q−1,k if k �= 0
.

Proof. Apply Lemma 6.3. �
Remark 6.8. Since f̃q,k has bi-degree (k, q − k) the monomial fq,k,b has bi-degree qd. 
This is key as we wish to apply these fq,k,b as in Proposition 5.5.

The remainder of this section is dedicated to proving that for certain b the monomial 
fq,k,b is non-zero as an element of S, and describing a certain subset of (R : fq,k,b). 
An important property, key to proving both of these, is that (fq,k,b/ remd(fq,k,b))1/d is 
equal to f̃q′,k′ for some q′ and k′.
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Lemma 6.9. Fix n = (n1, n2) ∈ Z2
≥1, d = (d1, d2) ∈ Z2

≥1, and b ∈ Z2. Further fix 
0 < q ≤ |n| and 0 ≤ k ≤ q such that q−k ≤ n1 and k ≤ n2. Suppose that |(q−k) +b1| < d1
and |k + b2| < d2.

(1) If 0 ≥ (q − k) + b1 and 0 ≥ k + b2 then 
(

fq,k,b

remd(fq,k,b)

)1/d
is equal to f̃q,k.

(2) If q − k + b1 < 0, k + b2 ≥ 0, and k �= 0 then 
(

fq,k,b

remd(fq,k,b)

)1/d
is equal to f̃q−1,k−1.

(3) If q − k + b1 ≥ 0, k + b2 < 0 then 
(

fq,k,b

remd(fq,k,b)

)1/d
is equal to f̃q−1,k.

Proof. We only prove part (1) as the remaining parts follow in a similar manner from 
Lemma 6.7. First, we handle the case when k = 0. The key facts are that remd(f̃d

q,0) is 
equal to f̃q,0, and that remd(xq+b1

q ) = xq+b1
q and remd(yb10 ) = yb20 since q + b1 < d1 and 

b2 < d2 respectively. Computing:

(
fq,0,b

remd(fq,0,b)

)1/d

=
(

(x0 · · ·xq−1)d1−1
xq+b1
q yb20 f̃d

q,0

(x0 · · ·xq−1)d1−1
xq+b1
q yb20

)1/d

=
(
f̃d
q,0
)1/d = f̃q,0.

The case when k �= 0 is essentially the same. Again the key facts are that remd
(
f̃d
q,k

)
=

f̃q,k, and that remd
(
xq−k+b1
q−k

)
= xq−k+b1

q−k and remd
(
yk+b2
k

)
= yk+b2

k since (q−k+b1) <
d1 and k + b2 < d2. From these then the result follows from the computation:

(
fq,k,b

remd(fq,k,b)

)1/d

=
(

(x0 · · ·xq−k−1)d1−1
xq−k+b1
q−k (y0 · · · yk−1)d2−1

yk+b2
k f̃d

q,k

(x0 · · ·xq−k−1)d1−1
xq−k+b1
q−k (y0 · · · yk−1)d2−1

yk+b2
k

)1/d

=
(
f̃d
q,k

)1/d = f̃q,k. �
Note the conditions that d1 > |q − k + b1| and d2 > |k + b2| ensure that (q − k + b1)

and k + b2 remain unchanged modulo d1 and d2 respectively. This, and Lemma 6.7, are 
the source of conditions appearing in Theorem A. Using this previous lemma together 
with Proposition 4.10 we conclude that fq,k,b �= 0 as an element of S.

Lemma 6.10. Fix n = (n1, n2) ∈ Z2
≥1, d = (d1, d2) ∈ Z2

≥1, and b ∈ Z2. Further fix 
0 < q ≤ |n| and 0 ≤ k ≤ q such that q − k ≤ n1 and k ≤ n2. Suppose |q − k + b1| < d1
and |k + b2| < d2. If one of the following pairs of inequalities hold:

(1) 0 ≥ (q − k) + b1 and 0 ≥ k + b2,
(2) q − k + b1 < 0, k + b2 ≥ 0, or
(3) q − k + b1 ≥ 0, k + b2 < 0

then the monomial fq,k,b �= 0 as an element of S.
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Proof. By Proposition 4.10 fq,k,b �∈ R(d) if and only if 
(

fq,k,b

remd(fq,k,b)

)1/d
�∈ R(1). By 

Lemma 6.9
(

fq,k,b

remd(fq,k,b)

)1/d
is equal to f̃q′,k′ for some q′ and k′. So fq,k,b �∈ R(d) if and 

only if f̃q′,k′ �∈ R(1). However, by construction f̃q′,k′ �∈ R(1). �
6.3. Linear annihilators of fq,k,b

Finally, we show that while fq,k,b is non-zero it is annihilated by xi and yj for where 
i and j are by q, k, and b. For example, if b = 0 then xifq,k,b and yjfq,k,b are equal to 
zero for a number of i = 0, 1, . . . , (q − k − 1) and j = 0, 1, . . . , (k − 1). Understanding 
these linear annihilators of fq,k,b is crucial to the proof of Theorem A and Theorem C
as it allows us to bound the #Z(fq,k,b), which is crucial to Corollary 5.6.

Proposition 6.11. Fix n = (n1, n2) ∈ Z2
≥1 and d = (d1, d2) ∈ Z2

≥1. Further fix integers 
0 < q ≤ |n| and 0 ≤ k ≤ q such that (q − k) ≤ n1 and k ≤ n2. Suppose |q − k + b1| < d1
and |k + b2| < d2.

(1) If 0 ≥ (q − k) + b1 and 0 ≥ k + b2 then

〈x0, x1, . . . , xq−k−1, y0, y1, . . . , yk−1〉 ⊂ (0 :S fq,k,b) .

(2) If q − k + b1 < 0, 0k + b2 ≥ 0, and k �= 0 then

〈x0, x1, . . . , xq−k−1, y0, y1, . . . , yk−2〉 ⊂ (0 :S fq,k,b) .

(3) If q − k + b1 ≥ 0, k + b2 < 0 then

〈x0, x1, . . . , xq−k−2, y0, y1, . . . , yk−1〉 ⊂ (0 :S fq,k,b) .

Proof. We begin by proving part (1). First, we handle the case when k = 0. Fixing 
an integer 0 ≤ i ≤ q − 1, we wish to show that xifq,k,b ∈ R. By Proposition 4.10

xifq,k,b ∈ R(d) if and only if 
(

xifq,k,b

remd(xifq,k,b)

)1/d
∈ R(1). Using that 0 ≤ q− k + b1 < d1

and 0 ≤ k + b2 < d2 and performing a computation analogous to the one in Lemma 6.9
we find:

(
xifq,0,b

remd(xifq,0,b)

)1/d

=
(
xi (x0 · · ·xq−1)d1−1

xq+b1
q yb20 f̃d

q,0

(x0 · · · x̂i · · ·xq−1)d1−1
xq+b1
q yb20

)1/d

=
(
xd1
i f̃d

q,0

)1/d
= xif̃q,0.

Now xif̃q,0 has bi-degree (1, q) and index weighted degree i, and so i ≤ q−1. Theorem 4.1
implies that xif̃q,0 ∈ R(1).
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Turning to the case when k > 0 fix an integer 0 ≤ i ≤ q−k−1. We wish to show that 

xifq,k,b ∈ R(d). By Proposition 4.10 xifq,k,b ∈ R(d) if and only if 
(

xifq,k,b

remd(xifq,k,b)

)1/d
∈

R(1). Using that 0 ≤ q−k+ b1 < d1 and 0 ≤ k+ b2 < d2 and performing a computation 
analogous to the one in Lemma 6.9 we find:

(
xifq,k,b

remd(xifq,k,b)

)1/d

=
(
xi (x0 · · ·xq−k−1)d1−1

xq−k+b1
q−k (y0 · · · yk−1)d2−1

yk+b2
k f̃d

q,k

(x0 · · · x̂i · · ·xq−k−1)d1−1
xq−k+b1
q−k (y0 · · · yk−1)d2−1

yk+b2
k

)1/d

=
(
xd1
i f̃d

q,k

)1/d
= xif̃q,k,

and so it enough to show that xif̃q,k ∈ R(1). Computing we find that deg(xif̃q,k) = (k+
1, q−k) and index.deg(xif̃q,k)) = k(q−k) + i. Finally, notice that since 0 ≤ i ≤ q−k−1
we have that:

k(q − k) + i ≤ k(q − k) + (q − k − 1) = (k + 1)(q − k) − 1,

and so by Theorem 4.1 dimS(k+1,q−k),k(q−k)+i = 0, which implies that xif̃q,k ∈ R(1).
The argument for the yj’s is similar. Fixing a natural number 0 ≤ j ≤ k − 1, we 

wish to show that yjfq,k,b ∈ R(d). Again using Proposition 4.10 it is enough to show 

that 
(

yjfq,k,b

remd(yjfq,k)

)1/d
∈ R(1). A computation analogous to the one in the previous cases 

shows that:

(
yjfq,k,b

remd(yjfq,k,b)

)1/d

=
(
yj (x0 · · ·xq−k−1)d1−1

xq−k+b1
q−k (y0 · · · yk−1)d2−1

yk+b2
k f̃d

q,k

(x0 · · ·xq−k−1)d1−1
xq−k+b1
q−k (y0 · · · ŷj · · · yk−1)d2−1

yk+b2
k

)1/d

=
(
yd2
j f̃d

q,k

)1/d
= yj f̃q,k,

and so it enough to show that yj f̃q,k ∈ R(1). The bi-degree of this element is (k, q−k+1)
and its index weighted degree is k(q− k) + j. Finally, notice that since 0 ≤ j ≤ k− 1 we 
have that:

k(q − k) + j ≤ k(q − k) + (k − 1) = k(q − k + 1) − 1,

and so by Theorem 4.1 dimS(k,q−k+1)k(q−k)+j = 0, which implies that yj f̃q,k ∈ R(1). 
Parts (2) and (3) follow in a similar fashion. �
7. The key case - Kp,q

(
Pq−k × Pk,b; d

)
In this section, we prove a special case of Theorem A. Specifically, we fix 0 ≤ k ≤ q

and consider Kp,q(P q−k × Pk, b; d). Following our heuristic that the non-vanishing of 
Kp,q(n, b; d) is controlled by subvarieties of the form P i×P j where i +j = q, we see that 
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the case of P q−k × Pk may be simpler than the general case since the only subvariety 
of this form is P q−k × Pk itself. This special case is crucial to our proof of the full 
theorem. In particular, our proof of the general case uses a series of arguments to reduce 
Theorem A to the following special case.

Theorem 7.1. Fix integers 0 ≤ k ≤ q, d ∈ Z2
>1, and b ∈ Z2

≥0. If (n, b; d) satisfies 
Assumption 1.4 and 0 ≤ q−k+b1 < d1 and 0 ≤ k+b2 < d2 then Kp,q((q−k, k), b; d) �= 0
for p = r(q−k,k),d − (q + 1).

Before proving Theorem 7.1 we need two lemmas regarding Hilbert functions. The 
first lemma shows that the Hilbert function of an ideal J ⊂ S can be bounded below in 
terms of the number of the linearly independent forms of total degree one.

Lemma 7.2. If J ⊂ S is a homogeneous ideal and L ⊂
〈
J(1,0), J(0,1)

〉
is a monomial ideal 

then

HF(d, J) ≥ rn,d −
(
d1 + n1 − dimL(1,0)

n1 − dimL(1,0)

)(
d2 − n2 − dimL(0,1)

n2 − dimL(0,1)

)
.

Proof. Let L′ = 〈L(1,0), L(0,1)〉 ⊂ S. Since L′ is generated by monomials of total degree 
one, the quotient S/L′ is exactly a bi-graded polynomial ring with n1 − dimL′

(1,0) x-
variables and n2 − dimL′

(0,1) y-variables. Therefore,

HF(d, S/L′) =
(
d1 + n1 − dimL′

(1,0)
n1 − dimL′

(1,0)

)(
d2 − n2 − dimL′

(0,1)
n2 − dimL′

(0,1)

)

=
(
d1 + n1 − dimL(1,0)

n1 − dimL(1,0)

)(
d2 − n2 − dimL(0,1)

n2 − dimL(0,1)

)
where the second equality comes from the fact that as L is monomial dimL′

(1,0) =
dimL(1,0) and dimL′

(0,1) = dimL(0,1). Since HF(d, S) = HF(d, L′) + HF(d, S/L′) this 
gives that

HF(d, L′) = rn,d −
(
d1 + n1 − dimL(1,0)

n1 − dimL(1,0)

)(
d2 − n2 − dimL(0,1)

n2 − dimL(0,1)

)
.

Finally the desired result follows by noting that HF(d, L′) ≤ HF(d, L) ≤ HF(d, J) since 
L′ ⊂ L ⊂ J . �

The second lemma concerns the Hilbert function of R(d).

Lemma 7.3. Fix integers 0 ≤ k ≤ q and d ∈ Z2
>1 and let n1 = q − k and n2 = k:

HF(d,R(d)) = (q − k) + k + 1 = q + 1.
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Proof. Since R(d) is generated in bi-degree d by g0, g1, . . . , gn it is enough to show that 
these g�’s are linearly independent over K. This follows from the fact that the index 
weighted degree induces a Z-grading on S, and that index weighted degree of each gt is 
distinct, Lemma 4.12. �
Proof of Theorem 7.1. As we are considering the case of P q−k × Pk, i.e. when n =
(q− k, k), throughout this proof we let S = K[x0, x1, . . . , xq−k, y0, y1, . . . , yk]. By Propo-
sition 3.6 the inequalities on b and d in the hypothesis of the theorem ensure that 
S(b; d) is Cohen-Macaulay as an R-module. Hence by the Artinian reduction ex-
plained in Corollary 3.8 we know that there exists a natural isomorphism between 
Kp,q((q − k, k), b; d) and KR

p,q

(
S(b;d)

)
. So it is enough to prove that KR

p,q

(
S(b;d)

)
is non-zero for p = r(q−k,k),d − (q + 1).

We do this by applying Corollary 5.6 to the monomial fq,k,b described in Defini-
tion 6.6. However, before we do this we check that fq,k,b satisfies the conditions need 
for Corollary 5.6. In particular, we check that fq,k,b is a well-defined monomial, which is 
non-zero in Sqd+b. The fact that fq,k,b is a well-defined monomial follows from the fact 
that both coordinates of b = (b1, b2) are non-negative (see Lemma 6.7). Moreover, since 
0 ≤ q − k + b1 < d1 and 0 ≤ k + b2 < d2 we know that fq,k,b is non-zero as an element 
of S (see Lemma 6.10).

Thus, by the monomial methods from Corollary 5.6 if L(fq,k,b) ⊂ Z(fq,k) then 
KR

p,q

(
S(b;d)

)
�= 0 for all p in

dim spanK L(fq,k,b) ≤ p ≤ dim spanK(fq,k,b).

In particular, using the trivial upper bound that dim spanKL(fq,k,b)≤ dim spanKZ(fq,k,b)
gives non-vanishing for p = dim spanK Z(fq,k). Thus, it is enough to i) show that 
L(fq,k,b) ⊂ Z(fq,k,b) and ii) give a lower bound on dim spanK Z(fq,k,b) that is also 
an upper bound on dim spanK L(fq,k,b).

Towards part (i) recall that

Z(fq,k,b) =
{

m
a monomial

of bi-degree d

∣∣∣∣ mfq,k,b = 0
}

⊂ Sd,

and so Z(fq,k,b) is equal to (0 :S fq,k,b)d ⊂ S. By Proposition 6.11 the ideal 
〈x0, x1, . . . , xq−k−1, y0, y1, . . . , yk−1〉 is contained in (R(d) :S fq,k,b), and so the degree 
d part of 〈x0, x1, . . . , xq−k−1, y0, y1 . . . , yk−1〉S is contained in Z(fq,k,b) = (0 :S fq,k,b)d. 
Thus, it is enough to show:

L(fq,k,b) =
{

m
a monomial of

bi-degree d

∣∣∣∣ index.degm ≤ index.deg fq,k,b

}
⊂
(
〈x0, x1, . . . , xq−k−1, y0, y1, . . . , yk−1〉S

)
.
d
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Since n1 = q − k and n2 = k the only monomial of bi-degree d not contained in 
〈x0, x1, . . . , xq−k−1, y0, y1, . . . , yk−1〉S is xd1

q−ky
d2
k . However, since n1 = q − k and n2 = k

we know that xd1
q−ky

d2
k = g|n|, and so xd1

q−ky
d2
k = 0 as an element of S. This gives the 

following containments:

L(fq,k,b) ⊂ 〈x0, x1, . . . , xq−k−1, y0, y1, . . . , yk−1〉S ⊂ Z(fq,k,b).

Shifting our focus to step (ii), and giving a lower bound for #Z(fq,k,b), note that:

dim spanK Z(fq,k,b) = HF(d, (0 :S fq,k,b)) = HF(d, (R :S fq,k,b)) − HF(d,R).

Utilizing the fact that 〈x0, x1, . . . , xq−k−1, y0, y1, . . . , yk−1〉 is contained in (R :S fq,k,b), 
Proposition 6.11, together with Lemmas 7.2 and 7.3 we get the desired result

dim spanK Z(fq,k,b) = HF(d, (R :S fq,k,b)) − HF(d,R)

≥ rq−k,kd + 1 −
(
d1

0

)(
d2

0

)
− HF(d,R)

= r(q−k,k),d − (q + 1). �
8. Proof of main theorems

We are now ready to prove our main results: Theorem A, Corollary B, and Theo-
rem C. By combining part (1) of Proposition 5.5 and Proposition 6.11 we can now easily 
construct Koszul co-cycles of the form m1 ∧ · · · ∧mp ⊗ fq,k,b. However, checking such a 
co-cycle is not a co-boundary is relatively difficult. Our key insight is that the issue of 
showing m1 ∧ · · · ∧mp ⊗ fq,k,b is not a co-boundary can, in a sense, be reduced to the 
special case considered in the Section 7.

More precisely if we fix 0 ≤ q ≤ |n| and 0 ≤ k ≤ q so that q−k ≤ n1 and k ≤ n2 then 
the quotient map

S S
〈xq−k+1,xq−k+2,...,xn1 ,yk+1,yk+2,...,yn2 〉

= S
′
,π

induces a map between Koszul complexes

· · ·
∧p+1

Sd⊗S(q−1)d+b
∧p

Sd⊗Sqd+b
∧p−1

Sd⊗S(q+1)d+b · · ·

· · ·
∧p+1

S
′
d⊗S

′
(q−1)d+b

∧p
S
′
d⊗S

′
qd+b

∧p−1
S
′
d⊗S

′
(q+1)d+b · · ·

π

∂p+1

π

∂p

π

∂
′
p+1 ∂

′
p

.
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Checking directly in coordinates one sees that this induced map is in fact a map of chain 
complexes

π
(
∂p(m1 ∧ · · · ∧mp ⊗ f)

)
= π

(
p∑

i=1
(−1)im1 ∧ · · · ∧ m̂i ∧ · · · ∧mp ⊗mif

)

=
p∑

i=1
(−1)iπ(m1) ∧ · · · ∧ m̂i ∧ · · · ∧ π(mp) ⊗ π(mif)

=
p∑

i=1
(−1)iπ(m1) ∧ · · · ˆπ(mi) ∧ · · · ∧ π(mp) ⊗ π(mi)π(f))

= ∂
′
p (π(m1) ∧ · · · ∧ π(mp) ⊗ π(f))

= ∂
′
p (π(m1 ∧ · · · ∧mp ⊗ f)) .

Chasing this diagram of Koszul complexes shows that the condition of an element 
ζ ∈
∧p

Sd⊗Sqd+b not being a co-boundary is implied by π(ζ) not being a co-boundary.

Lemma 8.1. Fix ζ ∈
∧p

Sd ⊗ Sqd. If π(ζ) �∈ img
(
∂
′
p+1

)
then ζ �∈ img

(
∂p+1

)
.

Proof. Towards a contradiction suppose there exists α ∈
∧p+1

Sd⊗S(q−1)d+b such that 
∂p+1(α) = ζ. Now since π induces a chain map of Koszul complexes

∂
′
p+1 (π(α)) = π

(
∂p+1(α)

)
= π(ζ)

contradicting the fact that π(ζ) �∈ img
(
∂
′
p+1

)
. �

Lemma 8.2. Fix ζ ∈
∧p

Sd ⊗ Sqd+b and m ∈ Sd. If ζ �∈ img ∂p+1,q then m ∧ ζ �∈
img ∂p+2,q.

Proof. We prove the contrapositive that if m ∧ ζ ∈ img ∂p+2,q then ζ ∈ img ∂p+1,q. 
Towards this let ζ = ζ1 ∧ · · · ∧ ζp ⊗ f , and assume that ∂p+2,q(α) = m ∧ ζ. Since m ∈ Sd

is non-zero and the set of monomials spans Sd we may choose a basis {m, ξ2, ξ3, . . . , ξN}
for Sd consisting of monomials. The following:

{
m ∧ ξj1 ∧ ξj2 ∧ · · · ∧ ξjp

∣∣ 2 ≤ j1 < j2 < · · · < jp ≤ N
}

∪
{
ξi0 ∧ ξi1 ∧ · · · ∧ ξip

∣∣ 2 ≤ i0 < i1 < · · · < ip ≤ N
}

now forms a basis for 
∧p+1

Sd. Given multi-indices j = 2 ≤ j1 < j2 < · · · < jp ≤ N

and i = 2 ≤ i0 < i1 < · · · < ip ≤ N we write ξj and ξi for ξj1 ∧ ξj2 ∧ · · · ∧ ξjp and 
ξi0 ∧ ξi1 ∧ · · · ∧ ξip respectively. We may then write α as
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α =
∑
j

m ∧ ξj ⊗ gj +
∑
i

ξi ⊗ hi = m ∧

⎛⎝∑
j

ξj ⊗ gj

⎞⎠+
∑
i

ξi ⊗ hi

where gj, hi ∈ Sqd+b. Computing we see that:

m ∧ ζ = ∂p+2,q(α) = ∂p+2,q

⎛⎝m ∧

⎛⎝∑
j

ξj ⊗ gj

⎞⎠+
∑
i

ξi ⊗ hi

⎞⎠
= ∂p+2,q

⎛⎝m ∧

⎛⎝∑
j

ξj ⊗ gj

⎞⎠⎞⎠+ ∂p+2,q

(∑
i

ξi ⊗ hi

)

= −m ∧

⎛⎝∂p+1,q

⎛⎝∑
j

ξj ⊗ gj

⎞⎠⎞⎠
︸ ︷︷ ︸

I

+
∑
j

−ξj ⊗mgj + ∂p+2,q

(∑
i

ξi ⊗ hi

)
︸ ︷︷ ︸

II

. (19)

Notice that both m ∧ ζ and Part I are contained in the vector subspace

spanK
{
m ∧ ξj1 ∧ ξj2 ∧ · · · ∧ ξjp−1

∣∣ 2 ≤ j1 < j2 < · · · < jp−1 ≤ N
}
⊗ S(q+1)d+b

⊂
∧p

Sd ⊗ S(q+1)d+b.

On the other hand, Part II of the above equation is entirely contained in the vector 
subspace ∧p

spanK{ξ2, ξ3, . . . , ξN ) ⊗ S(q+1)d+b ⊂
∧p

Sd ⊗ S(q+1)d+b.

As these two subspaces have trivial intersection for Equation (19) to be true Part II 
must equal zero. So Equation (19) simplifies to:

m ∧ ζ = −m ∧

⎛⎝∂p+1,q

⎛⎝∑
j

ξj ⊗ gj

⎞⎠⎞⎠ .

In particular, we see that ∂p+1,q

(
−
∑

j ξj ⊗ gj

)
= ζ, and so as claimed ζ ∈

img ∂p+1,q. �
Proof of Theorem C. By Proposition 3.6 the inequalities on b and d in the hypothesis 
of the theorem ensure that S(b; d) is Cohen-Macaulay as an R-module. In particular, 
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Proposition 3.5 implies that �0, �1, . . . , �|n| is a linear regular sequence on S(b; d), and 
so the Artinian reduction argument described in Corollary 3.8 shows that quotienting 
by 〈�0, �1, . . . , �|n|〉 induces an isomorphism between Kp,q(n, b; d) and KR

p,q

(
S(b;d)

)
.

Thus, it is enough to prove the desired non-vanishing for KR
p,q

(
S(b;d)

)
. We do this 

by first using the special non-trivial syzygy on P q−k × Pk constructed in Theorem 7.1
together with the lifting argument in Lemma 8.1 to construct a single non-trivial syzygy 
on Pn. We then construct other non-zero syzygies from this initial non-zero syzygy by 
Lemma 8.2.

Set δ = r(q−k,k),d−(q+1), and choose δ degree d non-zero monomials m1, m2, . . . , mδ

contained in the ideal 〈x0, x1, . . . , xq−k, y0, y1, . . . , yk〉S∩K[x0, x1 . . . , xq−k, y0, y1, . . . , yk]. 
We wish to show that ζ = m1 ∧ · · · ∧ mδ ⊗ fq,k,b represents a non-zero class in 
KR

p,δ

(
S(b;d)

)
. That is ζ represents a non-zero class in the cohomology of the following 

chain complex

· · ·
∧δ+1

Sd ⊗ S(q−1)d+b
∧δ

Sd ⊗ Sqd+b
∂δ+1

∧δ−1
Sd ⊗ S(q+1)d+b · · · .∂

′
δ (20)

Towards this, we first show that ζ is well-defined and non-zero, which amounts to 
checking the same for fq,kb. Since b1 ≥ 0 and b2 ≥ 0 we know by Lemma 6.7 that 
fq,k,b is a well-defined monomial in Sqd+b. Moreover, since 0 ≤ q − k + b1 < d1 and 
0 ≤ k + b2 < d2 we know that fq,k,b is non-zero as an element of S (see Lemma 6.10).

Having shown that ζ is well-defined we turn to proving that ζ is not in the image ∂δ+1. 
We do this by considering π(ζ) ∈

∧δ
S
′
d ⊗ S

′
qd+b where π is as defined in the beginning 

of this section. Using the inductive structure described in Lemma 3.4 we know that S′

is exactly S in the case when n1 = q − k and n2 = k. Thus, the Koszul complex

· · ·
∧δ+1

S
′
d ⊗ S

′
(q−1)d+b

∧δ
S
′
d ⊗ S

′
qd+b

∂
′
δ+1

∧δ−1
S
′
d ⊗ S

′
(q+1)d+b · · ·∂

′
δ (21)

actually computes Kδ,q((q − k, k), b; d). Moreover, by construction one sees that π(ζ)
represents one of the non-trivial syzygies constructed in Theorem 7.1. In particular, π(ζ)
represents a non-zero element in the cohomology of complex (21) above. This means that 
π(ζ) is not in the image of ∂′

δ+1.
Now by Lemma 8.1 the fact that π(ζ) is not in the image of ∂′

δ+1 implies that 
ζ ∈

∧δ
Sd ⊗ Sqd+b is not in the image of ∂δ+1. Thus, to show that ζ is a non-trivial 

syzygy on Pn, i.e. a non-zero element of the cohomology of complex (20) above, we 
must show that ζ is in the kernel of ∂δ. Using our description of the annihilators of 
fq,k,b given in Proposition 6.11 we know that m1, m2, . . . , mδ annihilate fq,k,b. So part 
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(1) of Proposition 5.5 implies that ∂δ(ζ) = 0. Hence ζ represents a non-trivial class in 
KR

p,δ

(
S(b;d)

)
.

We now use Lemma 8.2 to construct other non-trivial syzygies from ζ. In particular, 
by inductively applying Lemma 8.2 we know that if (n1 ∧ · · · ∧ nt) ∧ ζ is non-zero then 
(n1∧· · ·∧nt) ∧ζ is not in the image of ∂δ+t+1,q. Thus, as long as (n1∧· · ·∧nt) ∧ζ remains 
non-zero and in the kernel of ∂δ+t,q it will represent a non-trivial class in KR

δ+t,q(S(b; d)).
Using the description of the annihilators of fq,k,b given in Proposition 6.11 together 

with part (1) of Proposition 5.5 we know that (n1 ∧ · · · ∧ nt) ∧ ζ will be in the kernel of 
∂δ+t,q so long as ni ∈ 〈x0, x1, . . . , xq−k−1, y0, y1, . . . , yk−1〉S for all i. Further, (n1 ∧ · · · ∧
nt) ∧ ζ will be non-zero provided that n1, n2, . . . , nt, m1, m2, . . . , mδ are unique in S. As 
these are all monomials of bi-degree d contained in 〈x0, x1, . . . , xq−k−1, y0, y1, . . . , yk−1〉S
the number of such elements is controlled by the Hilbert function of this ideal. Using 
Lemma 7.2 to compute the Hilbert function of 〈x0, x1, . . . , xq−k−1, y0, y1, . . . , yk−1〉S we 
see that we can construct a non-trivial class in KR

δ+t,q(S(b; d)) whenever

δ + t ≤ HF
(
d, 〈x0, x1, . . . , xq−k−1, y0, y1, . . . , yk−1〉S

)
≥ HF (d, 〈x0, x1, . . . , xq−k−1, y0, y1, . . . , yk−1〉S) − HF (d,R(n,d))

= rn,d −
(
d1 + n1 − (q − k)

n1 − (q − k)

)(
d2 + n2 − k

n2 − k

)
− (|n| + 1). �

Proof of Theorem A. This follows immediately from Theorem C with b = 0. �
Proof of Corollary B. By Theorem A if d1 > q and d2 > q then

ρq(n;d) ≥1 −
min

{(
d1 + n1 − i

n1 − i

)(
d2 + n2 − j

n2 − j

) ∣∣∣∣ i + j = q
0 ≤ i ≤ n1
0 ≤ j ≤ n2

}
rn,d

−
min

{(
d1 + i

i

)(
d2 + j

j

) ∣∣∣∣ i + j = q
0 ≤ i ≤ n1
0 ≤ j ≤ n2

}
rn,d

− |n| − q − 1
rn,d

≥1 −
∑

i+j=q
0≤i≤n1
0≤j≤n2

(
d1 + n1 − i

n1 − i

)(
d2 + n2 − j

n2 − j

)
rn,d

+

(
d1 + i

i

)(
d2 + j

j

)
rn,d

− |n| − q − 1
rn,d

.

The result follows by noting that 
(
d+n
n

)
= dn

n! + O(dn−1) and rn,d = O(dn1
1 dn2

2 ). �
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